MathDB

Problems(4)

Sufficient condition for a point to lie on a median

Source: Romanian National Olympiad, grade ix, p.3

8/23/2019
Let be a point P P in the interior of a triangle ABC. ABC. The lines AP,BP,CP AP,BP,CP meet BC,AC, BC,AC, respectively, AB AB at A1,B1, A_1,B_1, respectively, C1. C_1. If APBA1+APCB1+APAC1=12AABC, \mathcal{A}_{PBA_1} +\mathcal{A}_{PCB_1} +\mathcal{A}_{PAC_1} =\frac{1}{2}\mathcal{A}_{ABC} , show that P P lies on a median of ABC. ABC.
A \mathcal{A} denotes area.
geometrymedianarea
variation of f(g(x)+g(y))=f(g(y))-y (same thing though)

Source: Romania National Olympiad 2015, grade x, p.3

8/23/2019
Find all functions f,g:QQ f,g:\mathbb{Q}\longrightarrow\mathbb{Q} that verify the relations {f(g(x)+g(y))=f(g(x))+yg(f(x)+f(y))=g(f(x))+y, \left\{\begin{matrix} f(g(x)+g(y))=f(g(x))+y \\ g(f(x)+f(y))=g(f(x))+y\end{matrix}\right. , for all x,yQ. x,y\in\mathbb{Q} .
functionalgebra
condition for the convergence of sum (x^i/i^b)

Source: Romania National Olympiad 2015, grade xi, p. 3

8/23/2019
Let be two nonnegative real numbers a,b a,b with b>a, b>a, and a sequence (xn)n1 \left( x_n \right)_{n\ge 1} of real numbers such that the sequence (x1+x2++xnna)n1 \left( \frac{x_1+x_2+\cdots +x_n}{n^a} \right)_{n\ge 1} is bounded.
Show that the sequence (x1+x22b+x33b++xnnb)n1 \left( x_1+\frac{x_2}{2^b} +\frac{x_3}{3^b} +\cdots +\frac{x_n}{n^b} \right)_{n\ge 1} is convergent.
real analysisSequences
Romanian National Olympiad 2015 - Grade 12 - Problem 3

Source: Romanian National Olympiad 2015 - Grade 12 - Problem 3

8/17/2024
Let C\mathcal{C} be the set of all twice differentiable functions f:[0,1]Rf:[0,1] \to \mathbb{R} with at least two (not necessarily distinct) zeros and f(x)1,|f''(x)| \le 1, for all x[0,1].x \in [0,1]. Find the greatest value of the integral 01f(x)dx\int\limits_0^1 |f(x)| \mathrm{d}x when ff runs through the set C,\mathcal{C}, as well as the functions that achieve this maximum.
Note: A differentiable function ff has two zeros in the same point aa if f(a)=f(a)=0.f(a)=f'(a)=0.
calculusIntegral calculusIntegral inequality