MathDB
Romania NMO 2022 Grade 12 P3

Source: Romania National Olympiad 2022

April 20, 2022
calculusfunctionromania

Problem Statement

Let f,g:RRf,g:\mathbb{R}\to\mathbb{R} be two nondecreasing functions.
[*]Show that for any aR,a\in\mathbb{R}, b[f(a0),f(a+0)]b\in[f(a-0),f(a+0)] and xR,x\in\mathbb{R}, the following inequality holds axf(t) dtb(xa).\int_a^xf(t) \ dt\geq b(x-a). [*]Given that [f(a0),f(a+0)][g(a0),g(a+0)][f(a-0),f(a+0)]\cap[g(a-0),g(a+0)]\neq\emptyset for any aR,a\in\mathbb{R}, prove that for any real numbers a<ba<babf(t) dt=abg(t) dt.\int_a^b f(t) \ dt=\int_a^b g(t) \ dt.
Note: h(a0)h(a-0) and h(a+0)h(a+0) denote the limits to the left and to the right respectively of a function hh at point aR.a\in\mathbb{R}.