Let f,g:R→R be two nondecreasing functions.[*]Show that for any a∈R,b∈[f(a−0),f(a+0)] and x∈R, the following inequality holds ∫axf(t)dt≥b(x−a).
[*]Given that [f(a−0),f(a+0)]∩[g(a−0),g(a+0)]=∅ for any a∈R, prove that for any real numbers a<b∫abf(t)dt=∫abg(t)dt.Note: h(a−0) and h(a+0) denote the limits to the left and to the right respectively of a function h at point a∈R.