MathDB

Problems(4)

Romania NMO 2022 Grade 9 P3

Source: Romania National Olympiad 2022

4/21/2022
Determine all functions f:RRf:\mathbb{R}\to\mathbb{R} for which there exists a function g:RRg:\mathbb{R}\to\mathbb{R} such that f(x)+f(y)=g(x+y)f(x)+f(y)=\lfloor g(x+y)\rfloor for all real numbers xx and yy.
Emil Vasile
functionalgebraromania
Romania NMO 2022 Grade 10 P3

Source: Romania National Olympiad 2022

4/21/2022
Let ZCZ\subset \mathbb{C} be a set of nn complex numbers, n2.n\geqslant 2. Prove that for any positive integer mm satisfying mn/2m\leqslant n/2 there exists a subset UU of ZZ with mm elements such thatzUzzZUz.\Bigg|\sum_{z\in U}z\Bigg|\leqslant\Bigg|\sum_{z\in Z\setminus U}z\Bigg|.Vasile Pop
complex numbersalgebraromania
Romania NMO 2022 Grade 11 P3

Source: Romania National Olympiad 2022

4/20/2022
Determine all functions f:RRf:\mathbb{R}\to\mathbb{R} which are differentiable in 00 and satisfy the following inequality for all real numbers x,yx,y f(x+y)+f(xy)f(x)+f(y).f(x+y)+f(xy)\geq f(x)+f(y).Dan Ștefan Marinescu and Mihai Piticari
romaniacalculusfunctionFunctional inequality
Romania NMO 2022 Grade 12 P3

Source: Romania National Olympiad 2022

4/20/2022
Let f,g:RRf,g:\mathbb{R}\to\mathbb{R} be two nondecreasing functions.
[*]Show that for any aR,a\in\mathbb{R}, b[f(a0),f(a+0)]b\in[f(a-0),f(a+0)] and xR,x\in\mathbb{R}, the following inequality holds axf(t) dtb(xa).\int_a^xf(t) \ dt\geq b(x-a). [*]Given that [f(a0),f(a+0)][g(a0),g(a+0)][f(a-0),f(a+0)]\cap[g(a-0),g(a+0)]\neq\emptyset for any aR,a\in\mathbb{R}, prove that for any real numbers a<ba<babf(t) dt=abg(t) dt.\int_a^b f(t) \ dt=\int_a^b g(t) \ dt.
Note: h(a0)h(a-0) and h(a+0)h(a+0) denote the limits to the left and to the right respectively of a function hh at point aR.a\in\mathbb{R}.
calculusfunctionromania