MathDB
Existence of alpha and beta satisfying min condition

Source: Serbia 2024 MO Problem 3

April 4, 2024
algebra

Problem Statement

Let nn be a positive integer and let a1,a2,,ana_1, a_2, \ldots, a_n and b1,b2,,bnb_1, b_2, \ldots, b_n be reals. Show that for any positive integer 1mn1 \leq m \leq n, there exist two distinct reals α,β\alpha, \beta, α2+β2>0\alpha^2+\beta^2>0, such that pm=min{p1,p2,,pn}p_m=\min\{p_1, p_2, \ldots, p_n\}, where pj=i=1nα(aiaj)+β(bibj)p_j=\sum_{i=1}^n|\alpha(a_i-a_j)+\beta(b_i-b_j)| for 1jn1\leq j \leq n.