MathDB
Problems
Contests
National and Regional Contests
Serbia Contests
Serbia National Math Olympiad
2024 Serbia National Math Olympiad
3
3
Part of
2024 Serbia National Math Olympiad
Problems
(1)
Existence of alpha and beta satisfying min condition
Source: Serbia 2024 MO Problem 3
4/4/2024
Let
n
n
n
be a positive integer and let
a
1
,
a
2
,
…
,
a
n
a_1, a_2, \ldots, a_n
a
1
,
a
2
,
…
,
a
n
and
b
1
,
b
2
,
…
,
b
n
b_1, b_2, \ldots, b_n
b
1
,
b
2
,
…
,
b
n
be reals. Show that for any positive integer
1
≤
m
≤
n
1 \leq m \leq n
1
≤
m
≤
n
, there exist two distinct reals
α
,
β
\alpha, \beta
α
,
β
,
α
2
+
β
2
>
0
\alpha^2+\beta^2>0
α
2
+
β
2
>
0
, such that
p
m
=
min
{
p
1
,
p
2
,
…
,
p
n
}
p_m=\min\{p_1, p_2, \ldots, p_n\}
p
m
=
min
{
p
1
,
p
2
,
…
,
p
n
}
, where
p
j
=
∑
i
=
1
n
∣
α
(
a
i
−
a
j
)
+
β
(
b
i
−
b
j
)
∣
p_j=\sum_{i=1}^n|\alpha(a_i-a_j)+\beta(b_i-b_j)|
p
j
=
i
=
1
∑
n
∣
α
(
a
i
−
a
j
)
+
β
(
b
i
−
b
j
)
∣
for
1
≤
j
≤
n
1\leq j \leq n
1
≤
j
≤
n
.
algebra