In triangle ABC, point D divides side AC so that AD:DC=1:2. Let E be the midpoint of BD and let F be the point of intersection of line BC and line AE. Given that the area of △ABC is 360, what is the area of △EBF?
[asy]
unitsize(1.5cm);
pair A,B,C,DD,EE,FF;
B = (0,0); C = (3,0);
A = (1.2,1.7);
DD = (2/3)*A+(1/3)*C;
EE = (B+DD)/2;
FF = intersectionpoint(B--C,A--A+2*(EE-A));
draw(A--B--C--cycle);
draw(A--FF);
draw(B--DD);dot(A);
label("A",A,N);
dot(B);
label("B",
B,SW);dot(C);
label("C",C,SE);
dot(DD);
label("D",DD,NE);
dot(EE);
label("E",EE,NW);
dot(FF);
label("F",FF,S);
[/asy]
<spanclass=′latex−bold′>(A)</span>24<spanclass=′latex−bold′>(B)</span>30<spanclass=′latex−bold′>(C)</span>32<spanclass=′latex−bold′>(D)</span>36<spanclass=′latex−bold′>(E)</span>40