Subcontests
(25)Coloring a Cube
The faces of a cube are painted in six different colors: red (R), white (W), green (G), brown (B), aqua (A), and purple (P). Three views of the cube are shown below. What is the color of the face opposite the aqua face?<span class=’latex-bold’>(A) </span>red<span class=’latex-bold’>(B) </span> white<span class=’latex-bold’>(C) </span>green<span class=’latex-bold’>(D) </span>brown <span class=’latex-bold’>(E)</span> purple[asy]
unitsize(2 cm);pair x, y, z, trans;
int i;x = dir(-5);
y = (0.6,0.5);
z = (0,1);
trans = (2,0);for (i = 0; i <= 2; ++i) {
draw(shift(i*trans)*((0,0)--x--(x + y)--(x + y + z)--(y + z)--z--cycle));
draw(shift(i*trans)*((x + z)--x));
draw(shift(i*trans)*((x + z)--(x + y + z)));
draw(shift(i*trans)*((x + z)--z));
}label(rotate(-3)*"R", (x + z)/2);
label(rotate(-5)*slant(0.5)*"B", ((x + z) + (y + z))/2);
label(rotate(35)*slant(0.5)*"G", ((x + z) + (x + y))/2);label(rotate(-3)*"W", (x + z)/2 + trans);
label(rotate(50)*slant(-1)*"B", ((x + z) + (y + z))/2 + trans);
label(rotate(35)*slant(0.5)*"R", ((x + z) + (x + y))/2 + trans);label(rotate(-3)*"P", (x + z)/2 + 2*trans);
label(rotate(-5)*slant(0.5)*"R", ((x + z) + (y + z))/2 + 2*trans);
label(rotate(-85)*slant(-1)*"G", ((x + z) + (x + y))/2 + 2*trans);
[/asy] Soccer Practice
The diagram shows the number of students at soccer practice each weekday during last week. After computing the mean and median values, Coach discovers that there were actually 21 participants on Wednesday. Which of the following statements describes the change in the mean and median after the correction is made?[asy]
unitsize(1 cm);real unitwidth, dayheight, barheight;
int i;unitwidth = 0.5;
dayheight = 1;
barheight = 0.3;draw((unitwidth,0)--(unitwidth,5*dayheight),gray(0.7));
draw((2*unitwidth,0)--(2*unitwidth,5*dayheight),gray(0.7));
draw((3*unitwidth,0)--(3*unitwidth,5*dayheight),gray(0.7));
draw((4*unitwidth,0)--(4*unitwidth,5*dayheight),gray(0.7));
draw((5*unitwidth,0)--(5*unitwidth,5*dayheight),gray(0.7));
draw((6*unitwidth,0)--(6*unitwidth,5*dayheight),gray(0.7));
draw((7*unitwidth,0)--(7*unitwidth,5*dayheight),gray(0.7));fill((0,1/2*dayheight - 1/2*barheight)--(8*unitwidth,1/2*dayheight - 1/2*barheight)--(8*unitwidth,1/2*dayheight + 1/2*barheight)--(0,1/2*dayheight + 1/2*barheight)--cycle,gray(0.5));fill((0,5/2*dayheight - 1/2*barheight)--(8*unitwidth,5/2*dayheight - 1/2*barheight)--(8*unitwidth,5/2*dayheight + 1/2*barheight)--(0,5/2*dayheight + 1/2*barheight)--cycle,gray(0.5));draw((8*unitwidth,0)--(8*unitwidth,5*dayheight),gray(0.7));
draw((9*unitwidth,0)--(9*unitwidth,5*dayheight),gray(0.7));fill((0,9/2*dayheight - 1/2*barheight)--(10*unitwidth,9/2*dayheight - 1/2*barheight)--(10*unitwidth,9/2*dayheight + 1/2*barheight)--(0,9/2*dayheight + 1/2*barheight)--cycle,gray(0.5));draw((10*unitwidth,0)--(10*unitwidth,5*dayheight),gray(0.7));fill((0,3/2*dayheight - 1/2*barheight)--(11*unitwidth,3/2*dayheight - 1/2*barheight)--(11*unitwidth,3/2*dayheight + 1/2*barheight)--(0,3/2*dayheight + 1/2*barheight)--cycle,gray(0.5));draw((11*unitwidth,0)--(11*unitwidth,5*dayheight),gray(0.7));
draw((12*unitwidth,0)--(12*unitwidth,5*dayheight),gray(0.7));fill((0,7/2*dayheight - 1/2*barheight)--(13*unitwidth,7/2*dayheight - 1/2*barheight)--(13*unitwidth,7/2*dayheight + 1/2*barheight)--(0,7/2*dayheight + 1/2*barheight)--cycle,gray(0.5));draw((0*unitwidth,0)--(0*unitwidth,5*dayheight),gray(0.7));
draw((13*unitwidth,0)--(13*unitwidth,5*dayheight),gray(0.7));
draw((14*unitwidth,0)--(14*unitwidth,5*dayheight),gray(0.7));label("0", (0,5*dayheight), N);
label("4", (2*unitwidth,5*dayheight), N);
label("8", (4*unitwidth,5*dayheight), N);
label("12", (6*unitwidth,5*dayheight), N);
label("16", (8*unitwidth,5*dayheight), N);
label("20", (10*unitwidth,5*dayheight), N);
label("24", (12*unitwidth,5*dayheight), N);
label("28", (14*unitwidth,5*dayheight), N);
label("Number of students at soccer practice", (7*unitwidth,6*dayheight));
label("Monday", (-0.5*unitwidth,9/2*dayheight), W);
label("Tuesday", (-0.5*unitwidth,7/2*dayheight), W);
label("Wednesday", (-0.5*unitwidth,5/2*dayheight), W);
label("Thursday", (-0.5*unitwidth,3/2*dayheight), W);
label("Friday", (-0.5*unitwidth,1/2*dayheight), W);
[/asy]<spanclass=′latex−bold′>(A)</span>The mean increases by 1 and the median does not change.<spanclass=′latex−bold′>(B)</span>The mean increases by 1 and the median increases by 1.<spanclass=′latex−bold′>(C)</span>The mean increases by 1 and the median increases by 5.<spanclass=′latex−bold′>(D)</span>The mean increases by 5 and the median increases by 1.<spanclass=′latex−bold′>(E)</span>The mean increases by 5 and the median increases by 5. Three Congruent Rectangles
Three identical rectangles are put together to form rectangle ABCD, as shown in the figure below. Given that the length of the shorter side of each of the smaller rectangles 5 feet, what is the area in square feet of rectangle ABCD?
[asy]draw((0,0)--(0,10)--(15,10)--(15,0)--(0,0));
draw((0,5)--(10,5));
draw((10,0)--(10,10));
label("A",(0,0),SW);
label("B",(15,0),SE);
label("C",(15,10),NE);
label("D",(0,10),NW);
dot((0,10));
dot((15,0));
dot((15,10));
dot((0,0));
[/asy]
<spanclass=′latex−bold′>(A)</span>45<spanclass=′latex−bold′>(B)</span>75<spanclass=′latex−bold′>(C)</span>100<spanclass=′latex−bold′>(D)</span>125<spanclass=′latex−bold′>(E)</span>150 Tortoise and hare
A tortoise challenges a hare to a race. The hare eagerly agrees and quickly runs ahead, leaving the slow-moving tortoise behind. Confident that he will win, the hare stops to take a nap. Meanwhile, the tortoise walks at a slow steady pace for the entire race. The hare awakes and runs to the finish line, only to find the tortoise already there. Which of the following graphs matches the description of the race, showing the distance d traveled by the two animals over time t from start to finish?h[asy]
unitsize(0.4 cm);pair transx, transy;
int i, j;
int x, y;transx = (13,0);
transy = (0,-9);for (i = 0; i <= 2; ++i) {
for (j = 0; j <= 1; ++j) {
if (i <= 1 || j <= 0) {
for (x = 1; x <= 10; ++x) {
draw(shift(i*transx + j*transy)*((x,0)--(x,5)),gray(0.7) + dashed);
}
for (y = 1; y <= 5; ++y) {
draw(shift(i*transx + j*transy)*((0,y)--(10,y)),gray(0.7) + dashed);
}
draw(shift(i*transx + j*transy)*((0,0)--(11,0)),Arrow(6));
draw(shift(i*transx + j*transy)*((0,0)--(0,6)),Arrow(6));
label("time", (5,-0.5) + i*transx + j*transy);
label(rotate(90)*"distance", (-0.5,2.5) + i*transx + j*transy);
}
}}draw((0,0)--(1.5,2.5)--(7.5,2.5)--(9,5),linewidth(1.5*bp));
draw((0,0)--(10,5),linewidth(1.5*bp));
draw(shift(transx)*((0,0)--(2.5,2.5)--(7.5,2.5)--(10,5)),linewidth(1.5*bp));
draw(shift(transx)*((0,0)--(9,5)),linewidth(1.5*bp));
draw(shift(2*transx)*((0,0)--(2.5,3)--(7,2)--(10,5)),linewidth(1.5*bp));
draw(shift(2*transx)*((0,0)--(9,5)),linewidth(1.5*bp));
draw(shift(transy)*((0,0)--(2.5,2.5)--(6.5,2.5)--(9,5)),linewidth(1.5*bp));
draw(shift(transy)*((0,0)--(7.5,2)--(10,5)),linewidth(1.5*bp));
draw(shift(transx + transy)*((0,0)--(2.5,2)--(7.5,3)--(10,5)),linewidth(1.5*bp));
draw(shift(transx + transy)*((0,0)--(9,5)),linewidth(1.5*bp));label("(A)", (-1,6));
label("(B)", (-1,6) + transx);
label("(C)", (-1,6) + 2*transx);
label("(D)", (-1,6) + transy);
label("(E)", (-1,6) + transx + transy);
[/asy] Many dots
There are 81 grid points (uniformly spaced) in the square shown in the diagram below, including the points on the edges. Point P is the center of the square. Given that point Q is randomly chosen from among the other 80 points, what is the probability that line PQ is a line of symmetry for the square?
[asy]
size(130);
defaultpen(fontsize(11));
int i, j;
for(i=0; i<9; i=i+1)
{
for(j=0; j<9; j=j+1)
if((i==4) && (j==4))
{
dot((i,j),linewidth(5));
} else {
dot((i,j),linewidth(3));
}
}
dot("P",(4,4),NE);
draw((0,0)--(0,8)--(8,8)--(8,0)--cycle);
[/asy]
<spanclass=′latex−bold′>(A)</span>51<spanclass=′latex−bold′>(B)</span>41<spanclass=′latex−bold′>(C)</span>52<spanclass=′latex−bold′>(D)</span>209<spanclass=′latex−bold′>(E)</span>21 Rhombus on #4?!?
Quadrilateral ABCD is a rhombus with perimeter 52 meters. The length of diagonal AC is 24 meters. What is the area in square meters of rhombus ABCD?
[asy]
unitsize(1cm);
draw((0,1)--(2,2)--(4,1)--(2,0)--cycle);
dot("A",(0,1),W);
dot("D",(2,2),N);
dot("C",(4,1),E);
dot("B",(2,0),S);
[/asy]
<spanclass=′latex−bold′>(A)</span>60<spanclass=′latex−bold′>(B)</span>90<spanclass=′latex−bold′>(C)</span>105<spanclass=′latex−bold′>(D)</span>120<spanclass=′latex−bold′>(E)</span>144 Medians.......
In triangle ABC, point D divides side AC so that AD:DC=1:2. Let E be the midpoint of BD and let F be the point of intersection of line BC and line AE. Given that the area of △ABC is 360, what is the area of △EBF?
[asy]
unitsize(1.5cm);
pair A,B,C,DD,EE,FF;
B = (0,0); C = (3,0);
A = (1.2,1.7);
DD = (2/3)*A+(1/3)*C;
EE = (B+DD)/2;
FF = intersectionpoint(B--C,A--A+2*(EE-A));
draw(A--B--C--cycle);
draw(A--FF);
draw(B--DD);dot(A);
label("A",A,N);
dot(B);
label("B",
B,SW);dot(C);
label("C",C,SE);
dot(DD);
label("D",DD,NE);
dot(EE);
label("E",EE,NW);
dot(FF);
label("F",FF,S);
[/asy]
<spanclass=′latex−bold′>(A)</span>24<spanclass=′latex−bold′>(B)</span>30<spanclass=′latex−bold′>(C)</span>32<spanclass=′latex−bold′>(D)</span>36<spanclass=′latex−bold′>(E)</span>40