MathDB

2019 AMC 8

Part of AMC 8

Subcontests

(25)

Coloring a Cube

The faces of a cube are painted in six different colors: red (R), white (W), green (G), brown (B), aqua (A), and purple (P). Three views of the cube are shown below. What is the color of the face opposite the aqua face?
<span class=’latex-bold’>(A) </span>red<span class=’latex-bold’>(B) </span> white<span class=’latex-bold’>(C) </span>green<span class=’latex-bold’>(D) </span>brown <span class=’latex-bold’>(E)</span> purple\text{<span class='latex-bold'>(A) </span>red}\qquad \text{<span class='latex-bold'>(B) </span> white}\qquad\text{<span class='latex-bold'>(C) </span>green}\qquad\text{<span class='latex-bold'>(D) </span>brown }\qquad\text{<span class='latex-bold'>(E)</span> purple}
[asy] unitsize(2 cm);
pair x, y, z, trans; int i;
x = dir(-5); y = (0.6,0.5); z = (0,1); trans = (2,0);
for (i = 0; i <= 2; ++i) { draw(shift(i*trans)*((0,0)--x--(x + y)--(x + y + z)--(y + z)--z--cycle)); draw(shift(i*trans)*((x + z)--x)); draw(shift(i*trans)*((x + z)--(x + y + z))); draw(shift(i*trans)*((x + z)--z)); }
label(rotate(-3)*"RR", (x + z)/2); label(rotate(-5)*slant(0.5)*"BB", ((x + z) + (y + z))/2); label(rotate(35)*slant(0.5)*"GG", ((x + z) + (x + y))/2);
label(rotate(-3)*"WW", (x + z)/2 + trans); label(rotate(50)*slant(-1)*"BB", ((x + z) + (y + z))/2 + trans); label(rotate(35)*slant(0.5)*"RR", ((x + z) + (x + y))/2 + trans);
label(rotate(-3)*"PP", (x + z)/2 + 2*trans); label(rotate(-5)*slant(0.5)*"RR", ((x + z) + (y + z))/2 + 2*trans); label(rotate(-85)*slant(-1)*"GG", ((x + z) + (x + y))/2 + 2*trans); [/asy]

Soccer Practice

The diagram shows the number of students at soccer practice each weekday during last week. After computing the mean and median values, Coach discovers that there were actually 2121 participants on Wednesday. Which of the following statements describes the change in the mean and median after the correction is made?
[asy] unitsize(1 cm);
real unitwidth, dayheight, barheight; int i;
unitwidth = 0.5; dayheight = 1; barheight = 0.3;
draw((unitwidth,0)--(unitwidth,5*dayheight),gray(0.7)); draw((2*unitwidth,0)--(2*unitwidth,5*dayheight),gray(0.7)); draw((3*unitwidth,0)--(3*unitwidth,5*dayheight),gray(0.7)); draw((4*unitwidth,0)--(4*unitwidth,5*dayheight),gray(0.7)); draw((5*unitwidth,0)--(5*unitwidth,5*dayheight),gray(0.7)); draw((6*unitwidth,0)--(6*unitwidth,5*dayheight),gray(0.7)); draw((7*unitwidth,0)--(7*unitwidth,5*dayheight),gray(0.7));
fill((0,1/2*dayheight - 1/2*barheight)--(8*unitwidth,1/2*dayheight - 1/2*barheight)--(8*unitwidth,1/2*dayheight + 1/2*barheight)--(0,1/2*dayheight + 1/2*barheight)--cycle,gray(0.5));
fill((0,5/2*dayheight - 1/2*barheight)--(8*unitwidth,5/2*dayheight - 1/2*barheight)--(8*unitwidth,5/2*dayheight + 1/2*barheight)--(0,5/2*dayheight + 1/2*barheight)--cycle,gray(0.5));
draw((8*unitwidth,0)--(8*unitwidth,5*dayheight),gray(0.7)); draw((9*unitwidth,0)--(9*unitwidth,5*dayheight),gray(0.7));
fill((0,9/2*dayheight - 1/2*barheight)--(10*unitwidth,9/2*dayheight - 1/2*barheight)--(10*unitwidth,9/2*dayheight + 1/2*barheight)--(0,9/2*dayheight + 1/2*barheight)--cycle,gray(0.5));
draw((10*unitwidth,0)--(10*unitwidth,5*dayheight),gray(0.7));
fill((0,3/2*dayheight - 1/2*barheight)--(11*unitwidth,3/2*dayheight - 1/2*barheight)--(11*unitwidth,3/2*dayheight + 1/2*barheight)--(0,3/2*dayheight + 1/2*barheight)--cycle,gray(0.5));
draw((11*unitwidth,0)--(11*unitwidth,5*dayheight),gray(0.7)); draw((12*unitwidth,0)--(12*unitwidth,5*dayheight),gray(0.7));
fill((0,7/2*dayheight - 1/2*barheight)--(13*unitwidth,7/2*dayheight - 1/2*barheight)--(13*unitwidth,7/2*dayheight + 1/2*barheight)--(0,7/2*dayheight + 1/2*barheight)--cycle,gray(0.5));
draw((0*unitwidth,0)--(0*unitwidth,5*dayheight),gray(0.7)); draw((13*unitwidth,0)--(13*unitwidth,5*dayheight),gray(0.7)); draw((14*unitwidth,0)--(14*unitwidth,5*dayheight),gray(0.7));
label("00", (0,5*dayheight), N); label("44", (2*unitwidth,5*dayheight), N); label("88", (4*unitwidth,5*dayheight), N); label("1212", (6*unitwidth,5*dayheight), N); label("1616", (8*unitwidth,5*dayheight), N); label("2020", (10*unitwidth,5*dayheight), N); label("2424", (12*unitwidth,5*dayheight), N); label("2828", (14*unitwidth,5*dayheight), N); label("Number of students at soccer practice", (7*unitwidth,6*dayheight)); label("Monday", (-0.5*unitwidth,9/2*dayheight), W); label("Tuesday", (-0.5*unitwidth,7/2*dayheight), W); label("Wednesday", (-0.5*unitwidth,5/2*dayheight), W); label("Thursday", (-0.5*unitwidth,3/2*dayheight), W); label("Friday", (-0.5*unitwidth,1/2*dayheight), W); [/asy]
<spanclass=latexbold>(A)</span>The mean increases by 1 and the median does not change.<span class='latex-bold'>(A) </span> \text{The mean increases by 1 and the median does not change.}
<spanclass=latexbold>(B)</span>The mean increases by 1 and the median increases by 1.<span class='latex-bold'>(B) </span> \text{The mean increases by 1 and the median increases by 1.}
<spanclass=latexbold>(C)</span>The mean increases by 1 and the median increases by 5.<span class='latex-bold'>(C) </span> \text{The mean increases by 1 and the median increases by 5.}
<spanclass=latexbold>(D)</span>The mean increases by 5 and the median increases by 1.<span class='latex-bold'>(D) </span> \text{The mean increases by 5 and the median increases by 1.}
<spanclass=latexbold>(E)</span>The mean increases by 5 and the median increases by 5.<span class='latex-bold'>(E) </span> \text{The mean increases by 5 and the median increases by 5.}
5
1

Tortoise and hare

A tortoise challenges a hare to a race. The hare eagerly agrees and quickly runs ahead, leaving the slow-moving tortoise behind. Confident that he will win, the hare stops to take a nap. Meanwhile, the tortoise walks at a slow steady pace for the entire race. The hare awakes and runs to the finish line, only to find the tortoise already there. Which of the following graphs matches the description of the race, showing the distance dd traveled by the two animals over time tt from start to finish?h\phantom{h}
[asy] unitsize(0.4 cm);
pair transx, transy; int i, j; int x, y;
transx = (13,0); transy = (0,-9);
for (i = 0; i <= 2; ++i) { for (j = 0; j <= 1; ++j) { if (i <= 1 || j <= 0) { for (x = 1; x <= 10; ++x) { draw(shift(i*transx + j*transy)*((x,0)--(x,5)),gray(0.7) + dashed); } for (y = 1; y <= 5; ++y) { draw(shift(i*transx + j*transy)*((0,y)--(10,y)),gray(0.7) + dashed); } draw(shift(i*transx + j*transy)*((0,0)--(11,0)),Arrow(6)); draw(shift(i*transx + j*transy)*((0,0)--(0,6)),Arrow(6)); label("time", (5,-0.5) + i*transx + j*transy); label(rotate(90)*"distance", (-0.5,2.5) + i*transx + j*transy); } }}
draw((0,0)--(1.5,2.5)--(7.5,2.5)--(9,5),linewidth(1.5*bp)); draw((0,0)--(10,5),linewidth(1.5*bp)); draw(shift(transx)*((0,0)--(2.5,2.5)--(7.5,2.5)--(10,5)),linewidth(1.5*bp)); draw(shift(transx)*((0,0)--(9,5)),linewidth(1.5*bp)); draw(shift(2*transx)*((0,0)--(2.5,3)--(7,2)--(10,5)),linewidth(1.5*bp)); draw(shift(2*transx)*((0,0)--(9,5)),linewidth(1.5*bp)); draw(shift(transy)*((0,0)--(2.5,2.5)--(6.5,2.5)--(9,5)),linewidth(1.5*bp)); draw(shift(transy)*((0,0)--(7.5,2)--(10,5)),linewidth(1.5*bp)); draw(shift(transx + transy)*((0,0)--(2.5,2)--(7.5,3)--(10,5)),linewidth(1.5*bp)); draw(shift(transx + transy)*((0,0)--(9,5)),linewidth(1.5*bp));
label("(A)", (-1,6)); label("(B)", (-1,6) + transx); label("(C)", (-1,6) + 2*transx); label("(D)", (-1,6) + transy); label("(E)", (-1,6) + transx + transy); [/asy]