MathDB
Very classical inequatily with natural numbers

Source: Canada 1998

March 4, 2006
inequalitiesinequalities unsolved

Problem Statement

Let n n be a natural number such that n2 n \geq 2. Show that \frac {1}{n \plus{} 1} \left( 1 \plus{} \frac {1}{3} \plus{} \cdot \cdot \cdot \plus{} \frac {1}{2n \minus{} 1} \right) > \frac {1}{n} \left( \frac {1}{2} \plus{} \frac {1}{4} \plus{} \cdot \cdot \cdot \plus{} \frac {1}{2n} \right).