Let n be a natural number such that n≥2. Show that
\frac {1}{n \plus{} 1} \left( 1 \plus{} \frac {1}{3} \plus{} \cdot \cdot \cdot \plus{} \frac {1}{2n \minus{} 1} \right) > \frac {1}{n} \left( \frac {1}{2} \plus{} \frac {1}{4} \plus{} \cdot \cdot \cdot \plus{} \frac {1}{2n} \right).
inequalitiesinequalities unsolved