MathDB
2021 Team #8

Source:

June 27, 2021
combinatoricsfloor functionnumber theory

Problem Statement

For each positive real number α\alpha, define αN:={αm    mN}.\lfloor \alpha \mathbb{N}\rfloor :=\{\lfloor \alpha m \rfloor\; |\; m\in \mathbb{N}\}. Let nn be a positive integer. A set S{1,2,,n}S\subseteq \{1,2,\ldots,n\} has the property that: for each real β>0\beta >0, if  SβN,then  {1,2,,n}βN. \text{if}\; S\subseteq \lfloor \beta \mathbb{N} \rfloor, \text{then}\; \{1,2,\ldots,n\} \subseteq \lfloor \beta\mathbb{N}\rfloor. Determine, with proof, the smallest positive size of SS.