MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Harvard-MIT Mathematics Tournament
2021 Harvard-MIT Mathematics Tournament.
8
2021 Team #8
2021 Team #8
Source:
June 27, 2021
combinatorics
floor function
number theory
Problem Statement
For each positive real number
α
\alpha
α
, define
⌊
α
N
⌋
:
=
{
⌊
α
m
⌋
∣
m
∈
N
}
.
\lfloor \alpha \mathbb{N}\rfloor :=\{\lfloor \alpha m \rfloor\; |\; m\in \mathbb{N}\}.
⌊
α
N
⌋
:=
{⌊
α
m
⌋
∣
m
∈
N
}
.
Let
n
n
n
be a positive integer. A set
S
⊆
{
1
,
2
,
…
,
n
}
S\subseteq \{1,2,\ldots,n\}
S
⊆
{
1
,
2
,
…
,
n
}
has the property that: for each real
β
>
0
\beta >0
β
>
0
,
if
S
⊆
⌊
β
N
⌋
,
then
{
1
,
2
,
…
,
n
}
⊆
⌊
β
N
⌋
.
\text{if}\; S\subseteq \lfloor \beta \mathbb{N} \rfloor, \text{then}\; \{1,2,\ldots,n\} \subseteq \lfloor \beta\mathbb{N}\rfloor.
if
S
⊆
⌊
β
N
⌋
,
then
{
1
,
2
,
…
,
n
}
⊆
⌊
β
N
⌋
.
Determine, with proof, the smallest positive size of
S
S
S
.
Back to Problems
View on AoPS