MathDB

Problems(4)

2021 Algebra/NT #8: LCM's and GCD's

Source:

5/30/2021
For positive integers aa and bb, let M(a,b)=lcm(a,b)gcd(a,b),M(a,b) = \tfrac{\text{lcm}(a,b)}{\gcd(a,b)}, and for each positive integer n2,n \ge 2, define xn=M(1,M(2,M(3,,M(n2,M(n1,n))))).x_n = M(1, M(2, M(3, \dots , M(n - 2, M(n - 1, n))\cdots))). Compute the number of positive integers nn such that 2n20212 \le n \le 2021 and 5xn2+5xn+12=26xnxn+1.5x_n^2 + 5x_{n+1}^2 = 26x_nx_{n+1}.
number theory
2021 Combo #8: Fill in the grid

Source:

5/30/2021
Compute the number of ways to fill each cell in a 8×88 \times 8 square grid with one of the letters H,M,H, M, or TT such that every 2×22 \times 2 square in the grid contains the letters H,M,M,TH, M, M, T in some order.
Combo
2021 Geo #8: Right triangle in two circles

Source:

5/30/2021
Two circles with radii 7171 and 100100 are externally tangent. Compute the largest possible area of a right triangle whose vertices are each on at least one of the circles.
geometry
2021 Team #8

Source:

6/27/2021
For each positive real number α\alpha, define αN:={αm    mN}.\lfloor \alpha \mathbb{N}\rfloor :=\{\lfloor \alpha m \rfloor\; |\; m\in \mathbb{N}\}. Let nn be a positive integer. A set S{1,2,,n}S\subseteq \{1,2,\ldots,n\} has the property that: for each real β>0\beta >0, if  SβN,then  {1,2,,n}βN. \text{if}\; S\subseteq \lfloor \beta \mathbb{N} \rfloor, \text{then}\; \{1,2,\ldots,n\} \subseteq \lfloor \beta\mathbb{N}\rfloor. Determine, with proof, the smallest positive size of SS.
combinatoricsfloor functionnumber theory