MathDB
Math Prize 2011 Problem 14

Source:

September 19, 2011
algebrafunctiondomain

Problem Statement

If 0p10 \le p \le 1 and 0q10 \le q \le 1, define F(p,q)F(p, q) by F(p,q)=2pq+3p(1q)+3(1p)q4(1p)(1q). F(p, q) = -2pq + 3p(1-q) + 3(1-p)q - 4(1-p)(1-q). Define G(p)G(p) to be the maximum of F(p,q)F(p, q) over all qq (in the interval 0q10 \le q \le 1). What is the value of pp (in the interval 0p10 \le p \le 1) that minimizes G(p)G(p)?