MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - Other Middle and High School Contests
Math Prize For Girls Problems
2011 Math Prize For Girls Problems
14
14
Part of
2011 Math Prize For Girls Problems
Problems
(1)
Math Prize 2011 Problem 14
Source:
9/19/2011
If
0
≤
p
≤
1
0 \le p \le 1
0
≤
p
≤
1
and
0
≤
q
≤
1
0 \le q \le 1
0
≤
q
≤
1
, define
F
(
p
,
q
)
F(p, q)
F
(
p
,
q
)
by
F
(
p
,
q
)
=
−
2
p
q
+
3
p
(
1
−
q
)
+
3
(
1
−
p
)
q
−
4
(
1
−
p
)
(
1
−
q
)
.
F(p, q) = -2pq + 3p(1-q) + 3(1-p)q - 4(1-p)(1-q).
F
(
p
,
q
)
=
−
2
pq
+
3
p
(
1
−
q
)
+
3
(
1
−
p
)
q
−
4
(
1
−
p
)
(
1
−
q
)
.
Define
G
(
p
)
G(p)
G
(
p
)
to be the maximum of
F
(
p
,
q
)
F(p, q)
F
(
p
,
q
)
over all
q
q
q
(in the interval
0
≤
q
≤
1
0 \le q \le 1
0
≤
q
≤
1
). What is the value of
p
p
p
(in the interval
0
≤
p
≤
1
0 \le p \le 1
0
≤
p
≤
1
) that minimizes
G
(
p
)
G(p)
G
(
p
)
?
algebra
function
domain