MathDB
2016 Guts #26

Source:

December 24, 2016

Problem Statement

For positive integers a,ba,b, aba\uparrow\uparrow b is defined as follows: a1=aa\uparrow\uparrow 1=a, and ab=aa(b1)a\uparrow\uparrow b=a^{a\uparrow\uparrow (b-1)} if b>1b>1.
Find the smallest positive integer nn for which there exists a positive integer aa such that a6≢a7a\uparrow\uparrow 6\not \equiv a\uparrow\uparrow 7 mod nn.