MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Harvard-MIT Mathematics Tournament
2016 Harvard-MIT Mathematics Tournament
26
26
Part of
2016 Harvard-MIT Mathematics Tournament
Problems
(1)
2016 Guts #26
Source:
12/24/2016
For positive integers
a
,
b
a,b
a
,
b
,
a
↑
↑
b
a\uparrow\uparrow b
a
↑↑
b
is defined as follows:
a
↑
↑
1
=
a
a\uparrow\uparrow 1=a
a
↑↑
1
=
a
, and
a
↑
↑
b
=
a
a
↑
↑
(
b
−
1
)
a\uparrow\uparrow b=a^{a\uparrow\uparrow (b-1)}
a
↑↑
b
=
a
a
↑↑
(
b
−
1
)
if
b
>
1
b>1
b
>
1
.Find the smallest positive integer
n
n
n
for which there exists a positive integer
a
a
a
such that
a
↑
↑
6
≢
a
↑
↑
7
a\uparrow\uparrow 6\not \equiv a\uparrow\uparrow 7
a
↑↑
6
≡
a
↑↑
7
mod
n
n
n
.