Chinese Girls Mathematical Olympiad 2016, Problem 4
Source: China Beijing ,12 Aug 2016
August 12, 2016
algebrainequalities
Problem Statement
Let n is a positive integers ,a1,a2,⋯,an∈{0,1,⋯,n} . For the integer j(1≤j≤n) ,define bj is the number of elements in the set {i∣i∈{1,⋯,n},ai≥j} .For example :When n=3 ,if a1=1,a2=2,a3=1 ,then b1=3,b2=1,b3=0 .
(1) Prove that i=1∑n(i+ai)2≥i=1∑n(i+bi)2.(2) Prove that i=1∑n(i+ai)k≥i=1∑n(i+bi)k,
for the integer k≥3.