MathDB
Problems
Contests
National and Regional Contests
China Contests
China Girls Math Olympiad
2016 China Girls Math Olympiad
2016 China Girls Math Olympiad
Part of
China Girls Math Olympiad
Subcontests
(8)
7
1
Hide problems
Prove equal fractions
In acute triangle
A
B
C
,
A
B
<
A
C
ABC, AB<AC
A
BC
,
A
B
<
A
C
,
I
I
I
is its incenter,
D
D
D
is the foot of perpendicular from
I
I
I
to
B
C
BC
BC
, altitude
A
H
AH
A
H
meets
B
I
,
C
I
BI,CI
B
I
,
C
I
at
P
,
Q
P,Q
P
,
Q
respectively. Let
O
O
O
be the circumcenter of
△
I
P
Q
\triangle IPQ
△
I
PQ
, extend
A
O
AO
A
O
to meet
B
C
BC
BC
at
L
L
L
. Circumcircle of
△
A
I
L
\triangle AIL
△
A
I
L
meets
B
C
BC
BC
again at
N
N
N
. Prove that
B
D
C
D
=
B
N
C
N
\frac{BD}{CD}=\frac{BN}{CN}
C
D
B
D
=
CN
BN
.
8
1
Hide problems
Inequality on number of points on segment
Let
Q
\mathbb{Q}
Q
be the set of rational numbers,
Z
\mathbb{Z}
Z
be the set of integers. On the coordinate plane, given positive integer
m
m
m
, define
A
m
=
{
(
x
,
y
)
∣
x
,
y
∈
Q
,
x
y
≠
0
,
x
y
m
∈
Z
}
.
A_m = \left\{ (x,y)\mid x,y\in\mathbb{Q}, xy\neq 0, \frac{xy}{m}\in \mathbb{Z}\right\}.
A
m
=
{
(
x
,
y
)
∣
x
,
y
∈
Q
,
x
y
=
0
,
m
x
y
∈
Z
}
.
For segment
M
N
MN
MN
, define
f
m
(
M
N
)
f_m(MN)
f
m
(
MN
)
as the number of points on segment
M
N
MN
MN
belonging to set
A
m
A_m
A
m
.Find the smallest real number
λ
\lambda
λ
, such that for any line
l
l
l
on the coordinate plane, there exists a constant
β
(
l
)
\beta (l)
β
(
l
)
related to
l
l
l
, satisfying: for any two points
M
,
N
M,N
M
,
N
on
l
l
l
,
f
2016
(
M
N
)
≤
λ
f
2015
(
M
N
)
+
β
(
l
)
f_{2016}(MN)\le \lambda f_{2015}(MN)+\beta (l)
f
2016
(
MN
)
≤
λ
f
2015
(
MN
)
+
β
(
l
)
6
1
Hide problems
Letters in grid
Find the greatest positive integer
m
m
m
, such that one of the
4
4
4
letters
C
,
G
,
M
,
O
C,G,M,O
C
,
G
,
M
,
O
can be placed in each cell of a table with
m
m
m
rows and
8
8
8
columns, and has the following property: For any two distinct rows in the table, there exists at most one column, such that the entries of these two rows in such a column are the same letter.
5
1
Hide problems
Chinese Girls Mathematical Olympiad 2016, Problem 5
Define a sequence
{
a
n
}
\{a_n\}
{
a
n
}
by
S
1
=
1
,
S
n
+
1
=
(
2
+
S
n
)
2
4
+
S
n
(
n
=
1
,
2
,
3
,
⋯
)
.
S_1=1,\ S_{n+1}=\frac{(2+S_n)^2}{ 4+S_n} (n=1,\ 2,\ 3,\ \cdots).
S
1
=
1
,
S
n
+
1
=
4
+
S
n
(
2
+
S
n
)
2
(
n
=
1
,
2
,
3
,
⋯
)
.
Where
S
n
S_n
S
n
the sum of first
n
n
n
terms of sequence
{
a
n
}
\{a_n\}
{
a
n
}
. For any positive integer
n
n
n
,prove that
a
n
≥
4
9
n
+
7
.
a_{n}\ge \frac{4}{\sqrt{9n+7}}.
a
n
≥
9
n
+
7
4
.
2
1
Hide problems
Sum of length of chords equal another
In
△
A
B
C
,
B
C
=
a
,
C
A
=
b
,
A
B
=
c
,
\triangle ABC, BC=a, CA=b, AB=c,
△
A
BC
,
BC
=
a
,
C
A
=
b
,
A
B
=
c
,
and
Γ
\Gamma
Γ
is its circumcircle.
(
1
)
(1)
(
1
)
Determine a necessary and sufficient condition on
a
,
b
a,b
a
,
b
and
c
c
c
if there exists a unique point
P
(
P
≠
B
,
P
≠
C
)
P(P\neq B, P\neq C)
P
(
P
=
B
,
P
=
C
)
on the arc
B
C
BC
BC
of
Γ
\Gamma
Γ
not passing through point
A
A
A
such that
P
A
=
P
B
+
P
C
PA=PB+PC
P
A
=
PB
+
PC
.
(
2
)
(2)
(
2
)
Let
P
P
P
be the unique point stated in
(
1
)
(1)
(
1
)
. If
A
P
AP
A
P
bisects
B
C
BC
BC
, prove that
∠
B
A
C
<
6
0
∘
\angle BAC<60^{\circ}
∠
B
A
C
<
6
0
∘
.
1
1
Hide problems
Switching two cards in two boxes
Let
n
≥
3
n\ge 3
n
≥
3
be an integer. Put
n
2
n^2
n
2
cards, each labelled
1
,
2
,
…
,
n
2
1,2,\ldots ,n^2
1
,
2
,
…
,
n
2
respectively, in any order into
n
n
n
empty boxes such that there are exactly
n
n
n
cards in each box. One can perform the following operation: one first selects
2
2
2
boxes, takes out any
2
2
2
cards from each of the selected boxes, and then return the cards to the other selected box. Prove that, for any initial order of the
n
2
n^2
n
2
cards in the boxes, one can perform the operation finitely many times such that the labelled numbers in each box are consecutive integers.
4
1
Hide problems
Chinese Girls Mathematical Olympiad 2016, Problem 4
Let
n
n
n
is a positive integers ,
a
1
,
a
2
,
⋯
,
a
n
∈
{
0
,
1
,
⋯
,
n
}
a_1,a_2,\cdots,a_n\in\{0,1,\cdots,n\}
a
1
,
a
2
,
⋯
,
a
n
∈
{
0
,
1
,
⋯
,
n
}
. For the integer
j
j
j
(
1
≤
j
≤
n
)
(1\le j\le n)
(
1
≤
j
≤
n
)
,define
b
j
b_j
b
j
is the number of elements in the set
{
i
∣
i
∈
{
1
,
⋯
,
n
}
,
a
i
≥
j
}
\{i|i\in\{1,\cdots,n\},a_i\ge j\}
{
i
∣
i
∈
{
1
,
⋯
,
n
}
,
a
i
≥
j
}
.For example :When
n
=
3
n=3
n
=
3
,if
a
1
=
1
,
a
2
=
2
,
a
3
=
1
a_1=1,a_2=2,a_3=1
a
1
=
1
,
a
2
=
2
,
a
3
=
1
,then
b
1
=
3
,
b
2
=
1
,
b
3
=
0
b_1=3,b_2=1,b_3=0
b
1
=
3
,
b
2
=
1
,
b
3
=
0
.
(
1
)
(1)
(
1
)
Prove that
∑
i
=
1
n
(
i
+
a
i
)
2
≥
∑
i
=
1
n
(
i
+
b
i
)
2
.
\sum_{i=1}^{n}(i+a_i)^2\ge \sum_{i=1}^{n}(i+b_i)^2.
i
=
1
∑
n
(
i
+
a
i
)
2
≥
i
=
1
∑
n
(
i
+
b
i
)
2
.
(
2
)
(2)
(
2
)
Prove that
∑
i
=
1
n
(
i
+
a
i
)
k
≥
∑
i
=
1
n
(
i
+
b
i
)
k
,
\sum_{i=1}^{n}(i+a_i)^k\ge \sum_{i=1}^{n}(i+b_i)^k,
i
=
1
∑
n
(
i
+
a
i
)
k
≥
i
=
1
∑
n
(
i
+
b
i
)
k
,
for the integer
k
≥
3.
k\ge 3.
k
≥
3.
3
1
Hide problems
Chinese Girls Mathematical Olympiad 2016, Problem 3
Let
m
m
m
and
n
n
n
are relatively prime integers and
m
>
1
,
n
>
1
m>1,n>1
m
>
1
,
n
>
1
. Show that:There are positive integers
a
,
b
,
c
a,b,c
a
,
b
,
c
such that
m
a
=
1
+
n
b
c
m^a=1+n^bc
m
a
=
1
+
n
b
c
, and
n
n
n
and
c
c
c
are relatively prime.