MathDB
2 Inequalities When xyz>1

Source: Irish Mathematical Olympiad - Paper 2 - 2008 -Question 5

May 11, 2008
inequalitiesinequalities proposed

Problem Statement

Suppose that x,y x, y and z z are positive real numbers such that xyz1 xyz \ge 1. (a) Prove that 27 \le (1 \plus{} x \plus{} y)^2 \plus{} (1\plus{} x \plus{} z)^2 \plus{} (1 \plus{} y \plus{} z)^2, with equality if and only if x \equal{} y \equal{} z \equal{} 1. (b) Prove that (1 \plus{} x \plus{} y)^2 \plus{} (1\plus{} x \plus{} z)^2 \plus{} (1 \plus{} y \plus{} z)^2 \le 3(x \plus{} y \plus{} z)^2, with equality if and only if x \equal{} y \equal{} z \equal{} 1.