2 Inequalities When xyz>1
Source: Irish Mathematical Olympiad - Paper 2 - 2008 -Question 5
May 11, 2008
inequalitiesinequalities proposed
Problem Statement
Suppose that and are positive real numbers such that .
(a) Prove that
27 \le (1 \plus{} x \plus{} y)^2 \plus{} (1\plus{} x \plus{} z)^2 \plus{} (1 \plus{} y \plus{} z)^2,
with equality if and only if x \equal{} y \equal{} z \equal{} 1.
(b) Prove that
(1 \plus{} x \plus{} y)^2 \plus{} (1\plus{} x \plus{} z)^2 \plus{} (1 \plus{} y \plus{} z)^2 \le 3(x \plus{} y \plus{} z)^2,
with equality if and only if x \equal{} y \equal{} z \equal{} 1.