5
Part of 2008 Irish Math Olympiad
Problems(2)
Obtuse Triangle Ratio Condition
Source: Irish Mathematical Olympiad - Paper 1 - 2008 -Question 5
5/10/2008
A triangle has an obtuse angle at . The perpindicular at to meets at , and |CD| \equal{} |AB|.
Prove that |AD|^2 \equal{} |AB|.|BC| if and only if \angle CBD \equal{} 30^\circ.
ratiogeometryparallelogramgeometry proposed
2 Inequalities When xyz>1
Source: Irish Mathematical Olympiad - Paper 2 - 2008 -Question 5
5/11/2008
Suppose that and are positive real numbers such that .
(a) Prove that
27 \le (1 \plus{} x \plus{} y)^2 \plus{} (1\plus{} x \plus{} z)^2 \plus{} (1 \plus{} y \plus{} z)^2,
with equality if and only if x \equal{} y \equal{} z \equal{} 1.
(b) Prove that
(1 \plus{} x \plus{} y)^2 \plus{} (1\plus{} x \plus{} z)^2 \plus{} (1 \plus{} y \plus{} z)^2 \le 3(x \plus{} y \plus{} z)^2,
with equality if and only if x \equal{} y \equal{} z \equal{} 1.
inequalitiesinequalities proposed