MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2007 Today's Calculation Of Integral
198
Today's calculation of Integral 198
Today's calculation of Integral 198
Source:
April 21, 2007
calculus
integration
logarithms
trigonometry
calculus computations
Problem Statement
Compare the values of the following definite integrals.
∫
0
∞
ln
(
x
+
1
x
)
d
x
1
+
x
2
,
∫
0
π
2
(
θ
sin
θ
)
2
d
θ
\int_{0}^{\infty}\ln \left(x+\frac{1}{x}\right)\frac{dx}{1+x^{2}},\ \ \int_{0}^{\frac{\pi}{2}}\left(\frac{\theta}{\sin \theta}\right)^{2}d\theta
∫
0
∞
ln
(
x
+
x
1
)
1
+
x
2
d
x
,
∫
0
2
π
(
sin
θ
θ
)
2
d
θ
Back to Problems
View on AoPS