MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2007 Today's Calculation Of Integral
198
198
Part of
2007 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 198
Source:
4/21/2007
Compare the values of the following definite integrals.
∫
0
∞
ln
(
x
+
1
x
)
d
x
1
+
x
2
,
∫
0
π
2
(
θ
sin
θ
)
2
d
θ
\int_{0}^{\infty}\ln \left(x+\frac{1}{x}\right)\frac{dx}{1+x^{2}},\ \ \int_{0}^{\frac{\pi}{2}}\left(\frac{\theta}{\sin \theta}\right)^{2}d\theta
∫
0
∞
ln
(
x
+
x
1
)
1
+
x
2
d
x
,
∫
0
2
π
(
sin
θ
θ
)
2
d
θ
calculus
integration
logarithms
trigonometry
calculus computations