MathDB
Two variable inequality

Source: Baltic Way 2023/5

November 11, 2023
inequalities

Problem Statement

Find the smallest positive real α\alpha, such that x+y2αxy+(1α)x2+y22\frac{x+y} {2}\geq \alpha\sqrt{xy}+(1 - \alpha)\sqrt{\frac{x^2+y^2}{2}} for all positive reals x,yx, y.