MathDB
Problems
Contests
International Contests
Baltic Way
2023 Baltic Way
5
5
Part of
2023 Baltic Way
Problems
(1)
Two variable inequality
Source: Baltic Way 2023/5
11/11/2023
Find the smallest positive real
α
\alpha
α
, such that
x
+
y
2
≥
α
x
y
+
(
1
−
α
)
x
2
+
y
2
2
\frac{x+y} {2}\geq \alpha\sqrt{xy}+(1 - \alpha)\sqrt{\frac{x^2+y^2}{2}}
2
x
+
y
≥
α
x
y
+
(
1
−
α
)
2
x
2
+
y
2
for all positive reals
x
,
y
x, y
x
,
y
.
inequalities