MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Polish MO Finals
1958 Polish MO Finals
3
cos 2\pi / n + cos 4\pi / n + cos 6\pi/ n +...+ \cos 2n \pi/n =0
cos 2\pi / n + cos 4\pi / n + cos 6\pi/ n +...+ \cos 2n \pi/n =0
Source: Polish MO Finals 1958 p3
August 29, 2024
trigonometry
Problem Statement
Prove that if
n
n
n
is a natural number greater than
1
1
1
, then
cos
2
π
n
+
cos
4
π
n
+
cos
6
π
n
+
…
+
cos
2
n
π
n
=
0.
\cos \frac{2\pi}{n} + \cos \frac{4\pi}{n} + \cos \frac{6\pi}{n} + \ldots + \cos \frac{2n \pi}{n} = 0.
cos
n
2
π
+
cos
n
4
π
+
cos
n
6
π
+
…
+
cos
n
2
nπ
=
0.
Back to Problems
View on AoPS