MathDB
Show that if $x\in S, y\in S, x\neq y,$ then $\frac{x+y}{2}\notin S$

Source: Moldova TST 2000

August 7, 2023

Problem Statement

Let SS{} be the set of nonnegative integers, which cointain only digits 00 and 11 in base 44 numeral system. a) Show that if xS,yS,xy,x\in S, y\in S, x\neq y, then x+y2S\frac{x+y}{2}\notin S. b) Let TT be a set of nonnegative integers such that ST,TSS\subset T, T\neq S. Show that there exist xT,yT,xy,x\in T, y\in T, x\neq y, such that x+y2T\frac{x+y}{2} \in T.