MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova Team Selection Test
2000 Moldova Team Selection Test
4
4
Part of
2000 Moldova Team Selection Test
Problems
(1)
Show that if $x\in S, y\in S, x\neq y,$ then $\frac{x+y}{2}\notin S$
Source: Moldova TST 2000
8/7/2023
Let
S
S{}
S
be the set of nonnegative integers, which cointain only digits
0
0
0
and
1
1
1
in base
4
4
4
numeral system. a) Show that if
x
∈
S
,
y
∈
S
,
x
≠
y
,
x\in S, y\in S, x\neq y,
x
∈
S
,
y
∈
S
,
x
=
y
,
then
x
+
y
2
∉
S
\frac{x+y}{2}\notin S
2
x
+
y
∈
/
S
. b) Let
T
T
T
be a set of nonnegative integers such that
S
⊂
T
,
T
≠
S
S\subset T, T\neq S
S
⊂
T
,
T
=
S
. Show that there exist
x
∈
T
,
y
∈
T
,
x
≠
y
,
x\in T, y\in T, x\neq y,
x
∈
T
,
y
∈
T
,
x
=
y
,
such that
x
+
y
2
∈
T
\frac{x+y}{2} \in T
2
x
+
y
∈
T
.