MathDB
Iterating function and fixed point

Source: Japan Mathematical Olympiad Finals 2018 Q3

February 13, 2018
functionalgebra

Problem Statement

Let S={1,2,,999}S=\{1,2,\ldots ,999\}. Consider a function f:SSf: S\to S, such that for any nSn\in S, fn+f(n)+1(n)=fnf(n)(n)=n.f^{n+f(n)+1}(n)=f^{nf(n)}(n)=n. Prove that there exists aSa\in S, such that f(a)=af(a)=a. Here fk(n)=f(f(fk(n)))f^k(n) = \underbrace{f(f(\ldots f}_{k}(n)\ldots)).