MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Japan MO Finals
2018 Japan MO Finals
3
3
Part of
2018 Japan MO Finals
Problems
(1)
Iterating function and fixed point
Source: Japan Mathematical Olympiad Finals 2018 Q3
2/13/2018
Let
S
=
{
1
,
2
,
…
,
999
}
S=\{1,2,\ldots ,999\}
S
=
{
1
,
2
,
…
,
999
}
. Consider a function
f
:
S
→
S
f: S\to S
f
:
S
→
S
, such that for any
n
∈
S
n\in S
n
∈
S
,
f
n
+
f
(
n
)
+
1
(
n
)
=
f
n
f
(
n
)
(
n
)
=
n
.
f^{n+f(n)+1}(n)=f^{nf(n)}(n)=n.
f
n
+
f
(
n
)
+
1
(
n
)
=
f
n
f
(
n
)
(
n
)
=
n
.
Prove that there exists
a
∈
S
a\in S
a
∈
S
, such that
f
(
a
)
=
a
f(a)=a
f
(
a
)
=
a
. Here
f
k
(
n
)
=
f
(
f
(
…
f
⏟
k
(
n
)
…
)
)
f^k(n) = \underbrace{f(f(\ldots f}_{k}(n)\ldots))
f
k
(
n
)
=
k
f
(
f
(
…
f
(
n
)
…
))
.
function
algebra