MathDB
Variant of floor function

Source: Kvant Magazine No. 9 2020 M2618

March 9, 2023
algebrafloor functionKvant

Problem Statement

For a given number α\alpha{} let fαf_\alpha be a function defined as fα(x)=αx+12.f_\alpha(x)=\left\lfloor\alpha x+\frac{1}{2}\right\rfloor.Let α>1\alpha>1 and β=1/α\beta=1/\alpha. Prove that for any natural nn{} the relation fβ(fα(n))=nf_\beta(f_\alpha(n))=n holds.
Proposed by I. Dorofeev