MathDB
Problems
Contests
International Contests
Kvant Problems
Kvant 2020
M2618
M2618
Part of
Kvant 2020
Problems
(1)
Variant of floor function
Source: Kvant Magazine No. 9 2020 M2618
3/9/2023
For a given number
α
\alpha{}
α
let
f
α
f_\alpha
f
α
be a function defined as
f
α
(
x
)
=
⌊
α
x
+
1
2
⌋
.
f_\alpha(x)=\left\lfloor\alpha x+\frac{1}{2}\right\rfloor.
f
α
(
x
)
=
⌊
αx
+
2
1
⌋
.
Let
α
>
1
\alpha>1
α
>
1
and
β
=
1
/
α
\beta=1/\alpha
β
=
1/
α
. Prove that for any natural
n
n{}
n
the relation
f
β
(
f
α
(
n
)
)
=
n
f_\beta(f_\alpha(n))=n
f
β
(
f
α
(
n
))
=
n
holds.Proposed by I. Dorofeev
algebra
floor function
Kvant