MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - Other Middle and High School Contests
CUBRMC
2023 CUBRMC
9
9
Part of
2023 CUBRMC
Problems
(1)
2023 CUBRMC Team #9 n|1+\sum^{n-1}_{k=1}k^{2k}
Source:
3/8/2024
Find the sum of all integers
n
n
n
such that
1
<
n
<
30
1 < n < 30
1
<
n
<
30
and
n
n
n
divides
1
+
∑
k
=
1
n
−
1
k
2
k
.
1+\sum^{n-1}_{k=1}k^{2k}.
1
+
k
=
1
∑
n
−
1
k
2
k
.
number theory
cubrmc