MathDB

Subcontests

(25)

2020 Individual #19

In the diagram below, ABAB is a diameter of circle OO. Point C is drawn such that BC\overline{BC} is tangent to circle OO, and AB=BCAB = BC. A point FF is selected on line ABAB and a point DD is selected on circle OO such that CDF=90\angle CDF = 90^\circ. Line BD\overline{BD} is then extended to point EE such that AEAE is tangent to circle OO. Given that AE=5AE = 5, calculate the length of AF\overline{AF}. (Diagram not to scale) [asy] size(120); pair A,O,F,B,D,EE,C; A=(-5,0); O=(0,0); B=(5,0); EE=(-5,6); F=(3.8,0); D=(-2.5,4.33); C=(5,10); dot(A^^O^^B^^EE^^F^^D^^C); draw(circle(O,5)); draw(A--EE--F--cycle); draw(D--B--C--cycle); draw(A--B); label("AA",A,W); label("OO",O,S); label("BB",B,E); label("FF",F,S); label("EE",EE,N); label("DD",D,N); label("CC",C,N); [/asy] <spanclass=latexbold>(A)</span>92<spanclass=latexbold>(B)</span>5<spanclass=latexbold>(C)</span>33<spanclass=latexbold>(D)</span>7<spanclass=latexbold>(E)</span>impossible to determine<span class='latex-bold'>(A) </span>\dfrac92\qquad<span class='latex-bold'>(B) </span>5\qquad<span class='latex-bold'>(C) </span>3\sqrt3\qquad<span class='latex-bold'>(D) </span>7\qquad<span class='latex-bold'>(E) </span>\text{impossible to determine}