MathDB

2004 AMC 8

Part of AMC 8

Subcontests

(25)

AMC 8 2004 Problem 23

Tess runs counterclockwise around rectangular block JKLM. She lives at corner J. Which graph could represent her straight-line distance from home?
[asy]pair J=(0,6), K=origin, L=(10,0), M=(10,6); draw(J--K--L--M--cycle); label("JJ", J, dir((5,3)--J)); label("KK", K, dir((5,3)--K)); label("LL", L, dir((5,3)--L)); label("MM", M, dir((5,3)--M));[/asy]
<spanclass=latexbold>(A)</span><span class='latex-bold'>(A)</span> [asy]size(80);defaultpen(linewidth(0.8)); draw((16,0)--origin--(0,16)); draw(origin--(15,15)); label("time", (8,0), S); label(rotate(90)*"distance", (0,8), W); [/asy] <spanclass=latexbold>(B)</span><span class='latex-bold'>(B)</span> [asy]size(80);defaultpen(linewidth(0.8)); draw((16,0)--origin--(0,16)); draw((0,6)--(1,6)--(1,12)--(2,12)--(2,11)--(3,11)--(3,1)--(12,1)--(12,0)); label("time", (8,0), S); label(rotate(90)*"distance", (0,8), W); [/asy] <spanclass=latexbold>(C)</span><span class='latex-bold'>(C)</span> [asy]size(80);defaultpen(linewidth(0.8)); draw((16,0)--origin--(0,16)); draw(origin--(2.7,8)--(3,9)^^(11,9)--(14,0)); draw(Arc((4,9), 1, 0, 180)); draw(Arc((10,9), 1, 0, 180)); draw(Arc((7,9), 2, 180,360)); label("time", (8,0), S); label(rotate(90)*"distance", (0,8), W); [/asy] <spanclass=latexbold>(D)</span><span class='latex-bold'>(D)</span> [asy]size(80);defaultpen(linewidth(0.8)); draw((16,0)--origin--(0,16)); draw(origin--(2,6)--(7,14)--(10,12)--(14,0)); label("time", (8,0), S); label(rotate(90)*"distance", (0,8), W); [/asy] <spanclass=latexbold>(E)</span><span class='latex-bold'>(E)</span> [asy]size(80);defaultpen(linewidth(0.8)); draw((16,0)--origin--(0,16)); draw(origin--(3,6)--(7,6)--(10,12)--(14,12)); label("time", (8,0), S); label(rotate(90)*"distance", (0,8), W); [/asy]

AMC 8 2004 Problem 24

In the figure, ABCDABCD is a rectangle and EFGHEFGH is a parallelogram. Using the measurements given in the figure, what is the length dd of the segment that is perpendicular to HEHE and FGFG?
[asy] defaultpen(linewidth(0.8)); size(200); pair A=(0,8), B=(10,8), C=(10,0), D=origin; pair E=(4,8), F=(10,3), G=(6,0), H=(0,5); pair I=H+4*dir(H--E); pair J=foot(I, F, G);
draw(A--B--C--D--cycle); draw(E--F--G--H--cycle); draw(I--J); draw(rightanglemark(H,I,J)); draw(rightanglemark(F,J,I));
label("AA", A, dir((5,4)--A)); label("BB", B, dir((5,4)--B)); label("CC", C, dir((5,4)--C)); label("DD", D, dir((5,4)--D)); label("EE", E, dir((5,4)--E)); label("FF", F, dir((5,4)--F)); label("GG", G, dir((5,4)--G)); label("HH", H, dir((5,4)--H)); label("dd", I--J, SW);
label("3", H--A, W); label("4", E--A, N); label("6", E--B, N); label("5", F--B, dir(1)); label("3", F--C, dir(1)); label("5", H--D, W); label("4", C--G, S); label("6", D--G, S); [/asy]
<spanclass=latexbold>(A)</span> 6.8<spanclass=latexbold>(B)</span> 7.1<spanclass=latexbold>(C)</span> 7.6<spanclass=latexbold>(D)</span> 7.8<spanclass=latexbold>(E)</span> 8.1 <span class='latex-bold'>(A)</span>\ 6.8\qquad<span class='latex-bold'>(B)</span>\ 7.1\qquad<span class='latex-bold'>(C)</span>\ 7.6\qquad<span class='latex-bold'>(D)</span>\ 7.8\qquad<span class='latex-bold'>(E)</span>\ 8.1

AMC 8 2004 Problem 21

Spinners A and B are spun. On each spinner, the arrow is equally likely to land on each number. What is the probability that the product of the two spinners' numbers is even?
[asy] defaultpen(linewidth(1)); draw(unitcircle); draw((1,0)--(-1,0)); draw((0,1)--(0,-1)); draw(shift(3,0)*unitcircle); draw(shift(3,0)*(origin--dir(90))); draw(shift(3,0)*(origin--dir(210))); draw(shift(3,0)*(origin--dir(330)));
draw(0.7*dir(200)--0.7*dir(20), linewidth(0.7), EndArrow(7)); draw(shift(3,0)*(0.7*dir(180+65)--0.7*dir(65)), linewidth(0.7), EndArrow(7));
label("11", (-0.45,0.1), N); label("44", (-0.45,-0.1), S); label("33", (0.45,-0.1), S); label("22", (0.45,0.1), N);
label("11", shift(3,0)*(-0.25,0.1), NW); label("22", shift(3,0)*(0.25,0.1), NE); label("33", shift(3,0)*(0,-0.3), S);
label("AA", (0,-1), S); label("BB", (3,-1), S); [/asy]
<spanclass=latexbold>(A)</span> 14<spanclass=latexbold>(B)</span> 13<spanclass=latexbold>(C)</span> 12<spanclass=latexbold>(D)</span> 23<spanclass=latexbold>(E)</span> 34 <span class='latex-bold'>(A)</span>\ \frac{1}{4}\qquad<span class='latex-bold'>(B)</span>\ \frac{1}{3}\qquad<span class='latex-bold'>(C)</span>\ \frac{1}{2}\qquad<span class='latex-bold'>(D)</span>\ \frac{2}{3}\qquad<span class='latex-bold'>(E)</span>\ \frac{3}{4}