MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
AMC 12/AHSME
1987 AMC 12/AHSME
26
26
Part of
1987 AMC 12/AHSME
Problems
(1)
1987 AMC 12 #26 - Probability
Source:
1/1/2012
The amount
2.5
2.5
2.5
is split into two nonnegative real numbers uniformly at random, for instance, into
2.143
2.143
2.143
and
.
357
.357
.357
, or into
3
\sqrt{3}
3
and
2.5
−
3
.
2.5-\sqrt{3}.
2.5
−
3
.
Then each number is rounded to its nearest integer, for instance,
2
2
2
and
0
0
0
in the first case above,
2
2
2
and
1
1
1
in the second. What is the probability that the two integers sum to
3
3
3
?
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
1
4
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
2
5
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
1
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
3
5
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
3
4
<span class='latex-bold'>(A)</span>\ \frac{1}{4} \qquad<span class='latex-bold'>(B)</span>\ \frac{2}{5} \qquad<span class='latex-bold'>(C)</span>\ \frac{1}{2} \qquad<span class='latex-bold'>(D)</span>\ \frac{3}{5} \qquad<span class='latex-bold'>(E)</span>\ \frac{3}{4}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
4
1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
5
2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
2
1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
5
3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
4
3
probability
AMC