MathDB
Problems
Contests
National and Regional Contests
Serbia Contests
Serbia National Math Olympiad
2021 Serbia National Math Olympiad
6
6
Part of
2021 Serbia National Math Olympiad
Problems
(1)
Repetition in sequences
Source: Serbian Mathematical Olympiad 2021, P6
5/14/2021
A finite sequence of natural numbers
a
1
,
a
2
,
…
,
a
n
a_1, a_2, \dots, a_n
a
1
,
a
2
,
…
,
a
n
is given. A sub-sequence
a
k
+
1
,
a
k
+
2
,
…
,
a
l
a_{k+1}, a_{k+2}, \dots, a_l
a
k
+
1
,
a
k
+
2
,
…
,
a
l
will be called a repetition if there exists a natural number
p
≤
l
−
k
2
p\leq \frac{l-k}2
p
≤
2
l
−
k
such that
a
i
=
a
i
+
p
a_i=a_{i+p}
a
i
=
a
i
+
p
for
k
+
1
≤
i
≤
l
−
p
k+1\leq i\leq l-p
k
+
1
≤
i
≤
l
−
p
, but
a
i
≠
a
i
+
p
a_i\neq a_{i+p}
a
i
=
a
i
+
p
for
i
=
k
i=k
i
=
k
(if
k
>
0
k>0
k
>
0
) and
i
=
l
−
p
+
1
i=l-p+1
i
=
l
−
p
+
1
(if
l
<
n
l<n
l
<
n
).Show that the sequence contains less than
n
n
n
repetitions.
combinatorics
Sequences