Let n be an even positive integer. Show that there exists a permutation (x1,x2,…,xn) of the set {1,2,…,n}, such that for each i∈{1,2,…,n},xi+1 is one of the numbers 2xi,2xi−1,2xi−n,2xi−n−1, where xn+1=x1. functionnumber theory unsolvednumber theory