MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova Team Selection Test
2001 Moldova Team Selection Test
4
4
Part of
2001 Moldova Team Selection Test
Problems
(1)
Prove that $2\log_3 n \leq f(n) < 5\log_3 n$ for every $n>1$.
Source: Moldova TST 2001
8/6/2023
For every nonnegative integer
n
n{}
n
let
f
(
n
)
f(n)
f
(
n
)
be the smallest number of digits
1
1
1
which can represent the number
n
n{}
n
using the symbols
"
+
"
,
"
−
"
,
"
×
"
,
"
(
"
,
"
)
"
"+", "-", "\times", "(", ")"
"
+
"
,
"
−
"
,
"
×
"
,
"
(
"
,
"
)
"
. For example,
80
=
(
1
+
1
+
1
+
1
+
1
)
×
(
1
+
1
+
1
+
1
)
×
(
1
+
1
+
1
+
1
)
80=(1+1+1+1+1)\times(1+1+1+1)\times(1+1+1+1)
80
=
(
1
+
1
+
1
+
1
+
1
)
×
(
1
+
1
+
1
+
1
)
×
(
1
+
1
+
1
+
1
)
and
f
(
80
)
≤
13
f(80)\leq 13
f
(
80
)
≤
13
. Prove that
2
log
3
n
≤
f
(
n
)
<
5
log
3
n
2\log_3 n \leq f(n) < 5\log_3 n
2
lo
g
3
n
≤
f
(
n
)
<
5
lo
g
3
n
for every
n
>
1
n>1
n
>
1
.