A sequence a1,a2,...,a2007 where ai∈{2,3} for i=1,2,...,2007 and an integer sequence x1,x2,...,x2007 satisfies the following: aixi+xi+2≡0 (mod5) , where the indices are taken modulo 2007. Prove that x1,x2,...,x2007 are all multiples of 5. number theorynumber theory with sequencesInteger sequenceSequencesmultiple