MathDB
Problems
Contests
National and Regional Contests
Korea Contests
Korea Junior Mathematics Olympiad
2007 Korea Junior Math Olympiad
2007 Korea Junior Math Olympiad
Part of
Korea Junior Mathematics Olympiad
Subcontests
(8)
1
1
Hide problems
a_ix_i + x_{i+2 }\equiv 0 (mod 5) where a_i sequence, x_i \in N sequence
A sequence
a
1
,
a
2
,
.
.
.
,
a
2007
a_1,a_2,...,a_{2007}
a
1
,
a
2
,
...
,
a
2007
where
a
i
∈
{
2
,
3
}
a_i \in\{2,3\}
a
i
∈
{
2
,
3
}
for
i
=
1
,
2
,
.
.
.
,
2007
i = 1,2,...,2007
i
=
1
,
2
,
...
,
2007
and an integer sequence
x
1
,
x
2
,
.
.
.
,
x
2007
x_1,x_2,...,x_{2007}
x
1
,
x
2
,
...
,
x
2007
satisfies the following:
a
i
x
i
+
x
i
+
2
≡
0
a_ix_i + x_{i+2 }\equiv 0
a
i
x
i
+
x
i
+
2
≡
0
(
m
o
d
5
mod 5
m
o
d
5
) , where the indices are taken modulo
2007
2007
2007
. Prove that
x
1
,
x
2
,
.
.
.
,
x
2007
x_1,x_2,...,x_{2007}
x
1
,
x
2
,
...
,
x
2007
are all multiples of
5
5
5
.
3
1
Hide problems
strings of length 6 composed of three characters a, b, c
Consider the string of length
6
6
6
composed of three characters
a
,
b
,
c
a, b, c
a
,
b
,
c
. For each string, if two
a
a
a
s are next to each other, or two
b
b
b
s are next to each other, then replace
a
a
aa
aa
by
b
b
b
, and replace
b
b
bb
bb
by
a
a
a
. Also, if
a
a
a
and
b
b
b
are next to each other, or two
c
c
c
s are next to each other, remove all two of them (i.e. delete
a
b
,
b
a
,
c
c
ab, ba, cc
ab
,
ba
,
cc
). Determine the number of strings that can be reduced to
c
c
c
, the string of length
1
1
1
, by the reducing processes mentioned above.
2
1
Hide problems
(a + b,a^n + b^n) for a,b coprime
If
n
n
n
is a positive integer and
a
,
b
a, b
a
,
b
are relatively prime positive integers, calculate
(
a
+
b
,
a
n
+
b
n
)
(a + b,a^n + b^n)
(
a
+
b
,
a
n
+
b
n
)
.
6
1
Hide problems
f(f(x)) = x, |f(x) - x| \ge 2, f : T\to ={1,2,...,10}
Let
T
=
{
1
,
2
,
.
.
.
,
10
}
T = \{1,2,...,10\}
T
=
{
1
,
2
,
...
,
10
}
. Find the number of bijective functions
f
:
T
→
T
f : T\to T
f
:
T
→
T
that satises the following for all
x
∈
T
x \in T
x
∈
T
:
f
(
f
(
x
)
)
=
x
f(f(x)) = x
f
(
f
(
x
))
=
x
∣
f
(
x
)
−
x
∣
≥
2
|f(x) - x| \ge 2
∣
f
(
x
)
−
x
∣
≥
2
8
1
Hide problems
prime of the year, n^2 +1 \equiv 0 mod p^{2007}
Prime
p
p
p
is called Prime of the Year if there exists a positive integer
n
n
n
such that
n
2
+
1
≡
0
n^2+ 1 \equiv 0
n
2
+
1
≡
0
(
m
o
d
p
2007
mod p^{2007}
m
o
d
p
2007
). Prove that there are infinite number of Primes of the Year.
5
1
Hide problems
\frac{a}{c+5b}+\frac{b}{a+5c}+\frac{c}{b+5a}\geq\frac{1}{2} , for a,b,c>0
For all positive real numbers
a
,
b
,
c
.
a, b,c.
a
,
b
,
c
.
Prove the folllowing inequality
a
c
+
5
b
+
b
a
+
5
c
+
c
b
+
5
a
≥
1
2
.
\frac{a}{c+5b}+\frac{b}{a+5c}+\frac{c}{b+5a}\geq\frac{1}{2}.
c
+
5
b
a
+
a
+
5
c
b
+
b
+
5
a
c
≥
2
1
.
7
1
Hide problems
incenter of a triangle is circumcenter to another, 2 isosceles triangles wanted
Let the incircle of
△
A
B
C
\triangle ABC
△
A
BC
meet
B
C
,
C
A
,
A
B
BC,CA,AB
BC
,
C
A
,
A
B
at
J
,
K
,
L
J,K,L
J
,
K
,
L
. Let
D
(
≠
B
,
J
)
,
E
(
≠
C
,
K
)
,
F
(
≠
A
,
L
)
D(\ne B, J),E(\ne C,K), F(\ne A,L)
D
(
=
B
,
J
)
,
E
(
=
C
,
K
)
,
F
(
=
A
,
L
)
be points on
B
J
,
C
K
,
A
L
BJ,CK,AL
B
J
,
C
K
,
A
L
. If the incenter of
△
A
B
C
\triangle ABC
△
A
BC
is the circumcenter of
△
D
E
F
\triangle DEF
△
D
EF
and
∠
B
A
C
=
∠
D
E
F
\angle BAC = \angle DEF
∠
B
A
C
=
∠
D
EF
, prove that
△
A
B
C
\triangle ABC
△
A
BC
and
△
D
E
F
\triangle DEF
△
D
EF
are isosceles triangles.
4
1
Hide problems
3 perpendicular bisectors and 6 concyclic points given, collinear wanted
Let
P
P
P
be a point inside
△
A
B
C
\triangle ABC
△
A
BC
. Let the perpendicular bisectors of
P
A
,
P
B
,
P
C
PA,PB,PC
P
A
,
PB
,
PC
be
ℓ
1
,
ℓ
2
,
ℓ
3
\ell_1,\ell_2,\ell_3
ℓ
1
,
ℓ
2
,
ℓ
3
. Let
D
=
ℓ
1
∩
ℓ
2
D =\ell_1 \cap \ell_2
D
=
ℓ
1
∩
ℓ
2
,
E
=
ℓ
2
∩
ℓ
3
E=\ell_2 \cap \ell_3
E
=
ℓ
2
∩
ℓ
3
,
F
=
ℓ
3
∩
ℓ
1
F=\ell_3 \cap \ell_1
F
=
ℓ
3
∩
ℓ
1
. If
A
,
B
,
C
,
D
,
E
,
F
A,B,C,D,E,F
A
,
B
,
C
,
D
,
E
,
F
lie on a circle, prove that
C
,
P
,
D
C, P,D
C
,
P
,
D
are collinear.