MathDB
Problems
Contests
National and Regional Contests
Canada Contests
Canada National Olympiad
2004 Canada National Olympiad
4
4
Part of
2004 Canada National Olympiad
Problems
(1)
congruence
Source: Canada 2004
6/26/2009
Let
p
p
p
be an odd prime. Prove that: \displaystyle\sum_{k\equal{}1}^{p\minus{}1}k^{2p\minus{}1} \equiv \frac{p(p\plus{}1)}{2} \pmod{p^2}
modular arithmetic
number theory proposed
number theory