MathDB
Problems
Contests
National and Regional Contests
Canada Contests
Canada National Olympiad
2004 Canada National Olympiad
2004 Canada National Olympiad
Part of
Canada National Olympiad
Subcontests
(5)
5
1
Hide problems
set of positive integer divisors
Let
T
T
T
be the set of all positive integer divisors of
200
4
100
2004^{100}
200
4
100
. What is the largest possible number of elements of a subset
S
S
S
of
T
T
T
such that no element in
S
S
S
divides any other element in
S
S
S
?
4
1
Hide problems
congruence
Let
p
p
p
be an odd prime. Prove that: \displaystyle\sum_{k\equal{}1}^{p\minus{}1}k^{2p\minus{}1} \equiv \frac{p(p\plus{}1)}{2} \pmod{p^2}
3
1
Hide problems
circle
Let
A
,
B
,
C
,
D
A,B,C,D
A
,
B
,
C
,
D
be four points on a circle (occurring in clockwise order), with
A
B
<
A
D
AB<AD
A
B
<
A
D
and
B
C
>
C
D
BC>CD
BC
>
C
D
. The bisectors of angles
B
A
D
BAD
B
A
D
and
B
C
D
BCD
BC
D
meet the circle at
X
X
X
and
Y
Y
Y
, respectively. Consider the hexagon formed by these six points on the circle. If four of the six sides of the hexagon have equal length, prove that
B
D
BD
B
D
must be a diameter of the circle.
2
1
Hide problems
Rooks on a 9x9 Board
How many ways can
8
8
8
mutually non-attacking rooks be placed on the
9
×
9
9\times9
9
×
9
chessboard (shown here) so that all
8
8
8
rooks are on squares of the same color? (Two rooks are said to be attacking each other if they are placed in the same row or column of the board.) [asy]unitsize(3mm); defaultpen(white); fill(scale(9)*unitsquare,black); fill(shift(1,0)*unitsquare); fill(shift(3,0)*unitsquare); fill(shift(5,0)*unitsquare); fill(shift(7,0)*unitsquare);fill(shift(0,1)*unitsquare); fill(shift(2,1)*unitsquare); fill(shift(4,1)*unitsquare); fill(shift(6,1)*unitsquare); fill(shift(8,1)*unitsquare);fill(shift(1,2)*unitsquare); fill(shift(3,2)*unitsquare); fill(shift(5,2)*unitsquare); fill(shift(7,2)*unitsquare);fill(shift(0,3)*unitsquare); fill(shift(2,3)*unitsquare); fill(shift(4,3)*unitsquare); fill(shift(6,3)*unitsquare); fill(shift(8,3)*unitsquare);fill(shift(1,4)*unitsquare); fill(shift(3,4)*unitsquare); fill(shift(5,4)*unitsquare); fill(shift(7,4)*unitsquare);fill(shift(0,5)*unitsquare); fill(shift(2,5)*unitsquare); fill(shift(4,5)*unitsquare); fill(shift(6,5)*unitsquare); fill(shift(8,5)*unitsquare);fill(shift(1,6)*unitsquare); fill(shift(3,6)*unitsquare); fill(shift(5,6)*unitsquare); fill(shift(7,6)*unitsquare);fill(shift(0,7)*unitsquare); fill(shift(2,7)*unitsquare); fill(shift(4,7)*unitsquare); fill(shift(6,7)*unitsquare); fill(shift(8,7)*unitsquare);fill(shift(1,8)*unitsquare); fill(shift(3,8)*unitsquare); fill(shift(5,8)*unitsquare); fill(shift(7,8)*unitsquare);draw(scale(9)*unitsquare,black);[/asy]
1
1
Hide problems
Simple System
Find all ordered triples
(
x
,
y
,
z
)
(x,y,z)
(
x
,
y
,
z
)
of real numbers which satisfy the following system of equations: \left\{\begin{array}{rcl} xy & \equal{} & z \minus{} x \minus{} y \\ xz & \equal{} & y \minus{} x \minus{} z \\ yz & \equal{} & x \minus{} y \minus{} z \end{array} \right.