MathDB
Problems
Contests
International Contests
Hungary-Israel Binational
1992 Hungary-Israel Binational
1992 Hungary-Israel Binational
Part of
Hungary-Israel Binational
Subcontests
(6)
6
1
Hide problems
rectangle has coordinates of vertices are Fibonacci numbers
We examine the following two sequences: The Fibonacci sequence:
F
0
=
0
,
F
1
=
1
,
F
n
=
F
n
−
1
+
F
n
−
2
F_{0}= 0, F_{1}= 1, F_{n}= F_{n-1}+F_{n-2 }
F
0
=
0
,
F
1
=
1
,
F
n
=
F
n
−
1
+
F
n
−
2
for
n
≥
2
n \geq 2
n
≥
2
; The Lucas sequence:
L
0
=
2
,
L
1
=
1
,
L
n
=
L
n
−
1
+
L
n
−
2
L_{0}= 2, L_{1}= 1, L_{n}= L_{n-1}+L_{n-2}
L
0
=
2
,
L
1
=
1
,
L
n
=
L
n
−
1
+
L
n
−
2
for
n
≥
2
n \geq 2
n
≥
2
. It is known that for all
n
≥
0
n \geq 0
n
≥
0
F
n
=
α
n
−
β
n
5
,
L
n
=
α
n
+
β
n
,
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}},L_{n}=\alpha^{n}+\beta^{n},
F
n
=
5
α
n
−
β
n
,
L
n
=
α
n
+
β
n
,
where
α
=
1
+
5
2
,
β
=
1
−
5
2
\alpha=\frac{1+\sqrt{5}}{2},\beta=\frac{1-\sqrt{5}}{2}
α
=
2
1
+
5
,
β
=
2
1
−
5
. These formulae can be used without proof.The coordinates of all vertices of a given rectangle are Fibonacci numbers. Suppose that the rectangle is not such that one of its vertices is on the
x
x
x
-axis and another on the
y
y
y
-axis. Prove that either the sides of the rectangle are parallel to the axes, or make an angle of
4
5
∘
45^{\circ}
4
5
∘
with the axes.
5
1
Hide problems
(...) can be written as a product of three Fibonacci numbers
We examine the following two sequences: The Fibonacci sequence:
F
0
=
0
,
F
1
=
1
,
F
n
=
F
n
−
1
+
F
n
−
2
F_{0}= 0, F_{1}= 1, F_{n}= F_{n-1}+F_{n-2 }
F
0
=
0
,
F
1
=
1
,
F
n
=
F
n
−
1
+
F
n
−
2
for
n
≥
2
n \geq 2
n
≥
2
; The Lucas sequence:
L
0
=
2
,
L
1
=
1
,
L
n
=
L
n
−
1
+
L
n
−
2
L_{0}= 2, L_{1}= 1, L_{n}= L_{n-1}+L_{n-2}
L
0
=
2
,
L
1
=
1
,
L
n
=
L
n
−
1
+
L
n
−
2
for
n
≥
2
n \geq 2
n
≥
2
. It is known that for all
n
≥
0
n \geq 0
n
≥
0
F
n
=
α
n
−
β
n
5
,
L
n
=
α
n
+
β
n
,
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}},L_{n}=\alpha^{n}+\beta^{n},
F
n
=
5
α
n
−
β
n
,
L
n
=
α
n
+
β
n
,
where
α
=
1
+
5
2
,
β
=
1
−
5
2
\alpha=\frac{1+\sqrt{5}}{2},\beta=\frac{1-\sqrt{5}}{2}
α
=
2
1
+
5
,
β
=
2
1
−
5
. These formulae can be used without proof. Show that
L
2
n
+
1
+
(
−
1
)
n
+
1
(
n
≥
1
)
L_{2n+1}+(-1)^{n+1}(n \geq 1)
L
2
n
+
1
+
(
−
1
)
n
+
1
(
n
≥
1
)
can be written as a product of three (not necessarily distinct) Fibonacci numbers.
3
2
Hide problems
On 100 strictly increasing sequences of positive integers
We are given
100
100
100
strictly increasing sequences of positive integers:
A
i
=
(
a
1
(
i
)
,
a
2
(
i
)
,
.
.
.
)
,
i
=
1
,
2
,
.
.
.
,
100
A_{i}= (a_{1}^{(i)}, a_{2}^{(i)},...), i = 1, 2,..., 100
A
i
=
(
a
1
(
i
)
,
a
2
(
i
)
,
...
)
,
i
=
1
,
2
,
...
,
100
. For
1
≤
r
,
s
≤
100
1 \leq r, s \leq 100
1
≤
r
,
s
≤
100
we define the following quantities:
f
r
(
u
)
=
f_{r}(u)=
f
r
(
u
)
=
the number of elements of
A
r
A_{r}
A
r
not exceeding
n
n
n
;
f
r
,
s
(
u
)
=
f_{r,s}(u) =
f
r
,
s
(
u
)
=
the number of elements of
A
r
∩
A
s
A_{r}\cap A_{s}
A
r
∩
A
s
not exceeding
n
n
n
. Suppose that
f
r
(
n
)
≥
1
2
n
f_{r}(n) \geq\frac{1}{2}n
f
r
(
n
)
≥
2
1
n
for all
r
r
r
and
n
n
n
. Prove that there exists a pair of indices
(
r
,
s
)
(r, s)
(
r
,
s
)
with
r
≠
s
r \not = s
r
=
s
such that
f
r
,
s
(
n
)
≥
8
n
33
f_{r,s}(n) \geq\frac{8n}{33}
f
r
,
s
(
n
)
≥
33
8
n
for at least five distinct
n
−
s
n-s
n
−
s
with
1
≤
n
<
19920.
1 \leq n < 19920.
1
≤
n
<
19920.
r-Fibonacci number
We examine the following two sequences: The Fibonacci sequence:
F
0
=
0
,
F
1
=
1
,
F
n
=
F
n
−
1
+
F
n
−
2
F_{0}= 0, F_{1}= 1, F_{n}= F_{n-1}+F_{n-2 }
F
0
=
0
,
F
1
=
1
,
F
n
=
F
n
−
1
+
F
n
−
2
for
n
≥
2
n \geq 2
n
≥
2
; The Lucas sequence:
L
0
=
2
,
L
1
=
1
,
L
n
=
L
n
−
1
+
L
n
−
2
L_{0}= 2, L_{1}= 1, L_{n}= L_{n-1}+L_{n-2}
L
0
=
2
,
L
1
=
1
,
L
n
=
L
n
−
1
+
L
n
−
2
for
n
≥
2
n \geq 2
n
≥
2
. It is known that for all
n
≥
0
n \geq 0
n
≥
0
F
n
=
α
n
−
β
n
5
,
L
n
=
α
n
+
β
n
,
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}},L_{n}=\alpha^{n}+\beta^{n},
F
n
=
5
α
n
−
β
n
,
L
n
=
α
n
+
β
n
,
where
α
=
1
+
5
2
,
β
=
1
−
5
2
\alpha=\frac{1+\sqrt{5}}{2},\beta=\frac{1-\sqrt{5}}{2}
α
=
2
1
+
5
,
β
=
2
1
−
5
. These formulae can be used without proof. We call a nonnegative integer
r
r
r
-Fibonacci number if it is a sum of
r
r
r
(not necessarily distinct) Fibonacci numbers. Show that there infinitely many positive integers that are not
r
r
r
-Fibonacci numbers for any
r
,
1
≤
r
≤
5.
r, 1 \leq r\leq 5.
r
,
1
≤
r
≤
5.
2
2
Hide problems
set of 1992 positive integers and sum of elements of subsets
A set
S
S
S
consists of
1992
1992
1992
positive integers among whose units digits all
10
10
10
digits occur. Show that there is such a set
S
S
S
having no nonempty subset
S
1
S_{1}
S
1
whose sum of elements is divisible by
2000
2000
2000
.
an equality on Fibonacci numbers
We examine the following two sequences: The Fibonacci sequence:
F
0
=
0
,
F
1
=
1
,
F
n
=
F
n
−
1
+
F
n
−
2
F_{0}= 0, F_{1}= 1, F_{n}= F_{n-1}+F_{n-2 }
F
0
=
0
,
F
1
=
1
,
F
n
=
F
n
−
1
+
F
n
−
2
for
n
≥
2
n \geq 2
n
≥
2
; The Lucas sequence:
L
0
=
2
,
L
1
=
1
,
L
n
=
L
n
−
1
+
L
n
−
2
L_{0}= 2, L_{1}= 1, L_{n}= L_{n-1}+L_{n-2}
L
0
=
2
,
L
1
=
1
,
L
n
=
L
n
−
1
+
L
n
−
2
for
n
≥
2
n \geq 2
n
≥
2
. It is known that for all
n
≥
0
n \geq 0
n
≥
0
F
n
=
α
n
−
β
n
5
,
L
n
=
α
n
+
β
n
,
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}},L_{n}=\alpha^{n}+\beta^{n},
F
n
=
5
α
n
−
β
n
,
L
n
=
α
n
+
β
n
,
where
α
=
1
+
5
2
,
β
=
1
−
5
2
\alpha=\frac{1+\sqrt{5}}{2},\beta=\frac{1-\sqrt{5}}{2}
α
=
2
1
+
5
,
β
=
2
1
−
5
. These formulae can be used without proof. Prove that
∑
k
=
1
n
[
α
k
F
k
+
1
2
]
=
F
2
n
+
1
∀
n
>
1.
\sum_{k=1}^{n}[\alpha^{k}F_{k}+\frac{1}{2}]=F_{2n+1}\; \forall n>1.
k
=
1
∑
n
[
α
k
F
k
+
2
1
]
=
F
2
n
+
1
∀
n
>
1.
1
2
Hide problems
a+1/a-2
Prove that if
c
c
c
is a positive number distinct from
1
1
1
and
n
n
n
a positive integer, then
n
2
≤
c
n
+
c
−
n
−
2
c
+
c
−
1
−
2
.
n^{2}\leq \frac{c^{n}+c^{-n}-2}{c+c^{-1}-2}.
n
2
≤
c
+
c
−
1
−
2
c
n
+
c
−
n
−
2
.
2^{j+1}|1+L_{2j} (Lucas sequence)
We examine the following two sequences: The Fibonacci sequence:
F
0
=
0
,
F
1
=
1
,
F
n
=
F
n
−
1
+
F
n
−
2
F_{0}= 0, F_{1}= 1, F_{n}= F_{n-1}+F_{n-2 }
F
0
=
0
,
F
1
=
1
,
F
n
=
F
n
−
1
+
F
n
−
2
for
n
≥
2
n \geq 2
n
≥
2
; The Lucas sequence:
L
0
=
2
,
L
1
=
1
,
L
n
=
L
n
−
1
+
L
n
−
2
L_{0}= 2, L_{1}= 1, L_{n}= L_{n-1}+L_{n-2}
L
0
=
2
,
L
1
=
1
,
L
n
=
L
n
−
1
+
L
n
−
2
for
n
≥
2
n \geq 2
n
≥
2
. It is known that for all
n
≥
0
n \geq 0
n
≥
0
F
n
=
α
n
−
β
n
5
,
L
n
=
α
n
+
β
n
,
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}},L_{n}=\alpha^{n}+\beta^{n},
F
n
=
5
α
n
−
β
n
,
L
n
=
α
n
+
β
n
,
where
α
=
1
+
5
2
,
β
=
1
−
5
2
\alpha=\frac{1+\sqrt{5}}{2},\beta=\frac{1-\sqrt{5}}{2}
α
=
2
1
+
5
,
β
=
2
1
−
5
. These formulae can be used without proof. Prove that
1
+
L
2
j
≡
0
(
m
o
d
2
j
+
1
)
1+L_{2^{j}}\equiv 0 \pmod{2^{j+1}}
1
+
L
2
j
≡
0
(
mod
2
j
+
1
)
for
j
≥
0
j \geq 0
j
≥
0
.
4
2
Hide problems
Pentagon in the plane [lattice point in a pentagram]
We are given a convex pentagon
A
B
C
D
E
ABCDE
A
BC
D
E
in the coordinate plane such that
A
A
A
,
B
B
B
,
C
C
C
,
D
D
D
,
E
E
E
are lattice points. Let
Q
Q
Q
denote the convex pentagon bounded by the five diagonals of the pentagon
A
B
C
D
E
ABCDE
A
BC
D
E
(so that the vertices of
Q
Q
Q
are the interior points of intersection of diagonals of the pentagon
A
B
C
D
E
ABCDE
A
BC
D
E
). Prove that there exists a lattice point inside of
Q
Q
Q
or on the boundary of
Q
Q
Q
.
(...) is not a perfect square (Fibonacci and Lucas numbers)
We examine the following two sequences: The Fibonacci sequence:
F
0
=
0
,
F
1
=
1
,
F
n
=
F
n
−
1
+
F
n
−
2
F_{0}= 0, F_{1}= 1, F_{n}= F_{n-1}+F_{n-2 }
F
0
=
0
,
F
1
=
1
,
F
n
=
F
n
−
1
+
F
n
−
2
for
n
≥
2
n \geq 2
n
≥
2
; The Lucas sequence:
L
0
=
2
,
L
1
=
1
,
L
n
=
L
n
−
1
+
L
n
−
2
L_{0}= 2, L_{1}= 1, L_{n}= L_{n-1}+L_{n-2}
L
0
=
2
,
L
1
=
1
,
L
n
=
L
n
−
1
+
L
n
−
2
for
n
≥
2
n \geq 2
n
≥
2
. It is known that for all
n
≥
0
n \geq 0
n
≥
0
F
n
=
α
n
−
β
n
5
,
L
n
=
α
n
+
β
n
,
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}},L_{n}=\alpha^{n}+\beta^{n},
F
n
=
5
α
n
−
β
n
,
L
n
=
α
n
+
β
n
,
where
α
=
1
+
5
2
,
β
=
1
−
5
2
\alpha=\frac{1+\sqrt{5}}{2},\beta=\frac{1-\sqrt{5}}{2}
α
=
2
1
+
5
,
β
=
2
1
−
5
. These formulae can be used without proof. Prove that
F
n
−
1
F
n
F
n
+
1
L
n
−
1
L
n
L
n
+
1
(
n
≥
2
)
F_{n-1}F_{n}F_{n+1}L_{n-1}L_{n}L_{n+1}(n \geq 2)
F
n
−
1
F
n
F
n
+
1
L
n
−
1
L
n
L
n
+
1
(
n
≥
2
)
is not a perfect square.