MathDB
Essentially Increasing Functions

Source: USAMO 2022/5

March 24, 2022
combinatoricsalgebrafunctionUSAMO

Problem Statement

A function f:RRf: \mathbb{R}\to \mathbb{R} is essentially increasing if f(s)f(t)f(s)\leq f(t) holds whenever sts\leq t are real numbers such that f(s)0f(s)\neq 0 and f(t)0f(t)\neq 0.
Find the smallest integer kk such that for any 2022 real numbers x1,x2,,x2022,x_1,x_2,\ldots , x_{2022}, there exist kk essentially increasing functions f1,,fkf_1,\ldots, f_k such that f1(n)+f2(n)++fk(n)=xnfor every n=1,2,2022.f_1(n) + f_2(n) + \cdots + f_k(n) = x_n\qquad \text{for every } n= 1,2,\ldots 2022.