MathDB
a^2 cos^2 A = b^2 cos^2 B + c^2 cos^2 C + 2bc cos B cos C cos 2A

Source: Polish MO Finals 1957 p2

August 29, 2024
trigonometrygeometry

Problem Statement

Prove that between the sides a a , b b , c c and the opposite angles A A , B B , C C of a triangle there is a relationship a2cos2A=b2cos2B+c2cos2C+2bccosBcosCcos2A. a^2 \cos^2 A = b^2 \cos^2 B + c^2 \cos^2 C + 2bc \cos B \cos C \cos 2A.