MathDB
Miklós Schweitzer 1955- Problem 2

Source:

September 30, 2015
real analysisfunctioncollege contests

Problem Statement

2. Let f1(x),,fn(x)f_{1}(x), \dots , f_{n}(x) be Lebesgue integrable functions on [0,1][0,1], with 01f1(x)dx=0\int_{0}^{1}f_{1}(x) dx= 0 (i=1,,n) (i=1,\dots ,n). Show that, for every α(0,1)\alpha \in (0,1), there existis a subset EE of [0,1][0,1] with measure α\alpha, such that Efi(x)dx=0\int_{E}f_{i}(x)dx=0. (R. 17)