MathDB
Inequality

Source: Romanian District Olympiad 2023 9.3

March 11, 2023
algebrainequalities

Problem Statement

Let x,yx,y{} and zz{} be positive real numbers satisfying x+y+z=1x+y+z=1. Prove that
[*]1x2yzx2+x=(1y)(1z)x2+x;1-\frac{x^2-yz}{x^2+x}=\frac{(1-y)(1-z)}{x^2+x}; [*]x2yzx2+x+y2zxy2+y+z2xyz2+z0.\frac{x^2-yz}{x^2+x}+\frac{y^2-zx}{y^2+y}+\frac{z^2-xy}{z^2+z}\leqslant 0.