MathDB
Nonsymmetric inequality for sum of three fractions

Source: Macedonian TST for IMO 2013 - P1 day 2

March 28, 2021
inequalities

Problem Statement

Let a>0,b>0,c>0a>0,b>0,c>0 and a+b+c=1a+b+c=1. Show the inequality a4+b4a2+b2+b3+c3b+c+2a2+b2+2c2212\frac{a^4+b^4}{a^2+b^2}+\frac{b^3+c^3}{b+c} + \frac{2a^2+b^2+2c^2}{2} \geq \frac{1}{2}