MathDB
IMO Shortlist 2014 A2

Source:

July 11, 2015
IMO Shortlistalgebrafunctioncalculus

Problem Statement

Define the function f:(0,1)(0,1)f:(0,1)\to (0,1) by f(x)={x+12if  x<12x2if  x12\displaystyle f(x) = \left\{ \begin{array}{lr} x+\frac 12 & \text{if}\ \ x < \frac 12\\ x^2 & \text{if}\ \ x \ge \frac 12 \end{array} \right. Let aa and bb be two real numbers such that 0<a<b<10 < a < b < 1. We define the sequences ana_n and bnb_n by a0=a,b0=ba_0 = a, b_0 = b, and an=f(an1)a_n = f( a_{n -1}), bn=f(bn1)b_n = f (b_{n -1} ) for n>0n > 0. Show that there exists a positive integer nn such that (anan1)(bnbn1)<0.(a_n - a_{n-1})(b_n-b_{n-1})<0.
Proposed by Denmark