MathDB
Putnam 2003 B6

Source:

June 23, 2011
Putnamfunctionintegrationcollege contests

Problem Statement

Let f(x)f(x) be a continuous real-valued function defined on the interval [0,1][0, 1]. Show that 0101f(x)+f(y)dx  dy01f(x)dx\int_0^1\int_0^1|f(x)+f(y)|dx \; dy \ge \int_0^1 |f(x)|dx