MathDB
$$\sum_{A\in M} (-1)^{n-|A|}\cdot f(A)=f(S)-\max\{f(A)|A\in M, A\neq S\},$$

Source: Moldova TST 2000

August 7, 2023
function

Problem Statement

Let SS be a finite set with nn{} (n>1)(n>1) elements, MM{} the set of all subsets of SS{} and a function f:MRf:M\rightarrow\mathbb{R}, that verifies the relation f(AB)=min{f(A),f(B)},A,BMf(A\cap B)=\min\{f(A),f(B)\}, \forall A,B\in M. Show that AM(1)nAf(A)=f(S)max{f(A)AM,AS},\sum_{A\in M} (-1)^{n-|A|}\cdot f(A)=f(S)-\max\{f(A)|A\in M, A\neq S\}, whereA|A| is the number of elements of subset AA{}.