$$\sum_{A\in M} (-1)^{n-|A|}\cdot f(A)=f(S)-\max\{f(A)|A\in M, A\neq S\},$$
Source: Moldova TST 2000
August 7, 2023
function
Problem Statement
Let S be a finite set with n(n>1) elements, M the set of all subsets of S and a function f:M→R, that verifies the relation f(A∩B)=min{f(A),f(B)},∀A,B∈M. Show that A∈M∑(−1)n−∣A∣⋅f(A)=f(S)−max{f(A)∣A∈M,A=S}, where∣A∣ is the number of elements of subset A.